No Image

Чем питаются почвенные бактерии

СОДЕРЖАНИЕ
0 просмотров
10 марта 2020

Почвы, которые сегодня присутствуют на Земле, были образованы в результате жизнедеятельности бактерий. Перерабатывая минеральные частицы горных пород и смешивая их с продуктами переработки отмерших органических соединений и результатом собственной жизнедеятельности, микроорганизмы постепенно превратили безжизненные скалистые долины нашей планеты в плодородные земли. Живые микроорганизмы и бактерии – важнейший элемент цепи естественного круговорота в природе. Считается, что именно они являются двигателем этого процесса.

В природе их очень много: всего в одном грамме лесного грунта содержатся десятки и даже сотни миллионов почвенных бактерий разных видов и подвидов.

Естественный круговорот

В процессе роста растения воспроизводят сложнейшие органические вещества из простых веществ: воды, минеральных солей и углекислого газа. Микроорганизмы, живущие в почве, в результате своей жизнедеятельности перерабатывают отмершие части растений и погибшие организмы в перегной, разлагая тем самым сложные вещества на простые. Эти компоненты растения могут снова использовать для своего развития и роста.

Распространение почвенных микроорганизмов

Бактерий вокруг нас великое множество и распространены они почти везде. Их нет разве что в кратерах действующих вулканов и на небольших участках испытательных полигонов, где проводятся взрывы атомного оружия. Никакие другие жесткие условия окружающей среды не мешают существованию бактерий. Они спокойно переносят ледники Антарктики и живут в воде обжигающих кипящих источников, спокойно приспосабливаются к раскаленным пескам жарких пустынь и живут на скалистых склонах горных вершин. Их настолько много, что вполне возможно, что некоторые названия почвенных бактерий мы еще даже не знаем. На Земле все живые существа постоянно взаимодействуют с микрофлорой, часто выполняя при этом роль ее хранителя и распространителя.

Микрофлора почвы очень богата и разнообразна. Всего в одном кубическом сантиметре может встречаться до миллиарда бактерий. Однако популяция почвенных микроорганизмов может изменяться. Это зависит от типа и состава почвы, ее состояния, а также глубины изучаемого слоя.

Как питаются бактерии

Почвенные микроорганизмы могут получать энергию несколькими способами. Некоторые из бактерий этой группы являются автотрофными, то есть могут самостоятельно вырабатывать собственные вещества для питания, а какие-то из них в качестве питания используют в пищу органические соединения. Именно последняя группа, представляющая гетеротрофные бактерии, и заслуживает отдельного внимания. Среди гетеротрофных представителей царства микроорганизмов, выделяют три основные группы бактерий:

У каждой из этих категорий не только различный способ питания, но и образ жизни совершенно разный. Какие-то виды могут существовать только в воздушной или кисломолочной среде, каким-то микроорганизмам для полноценного существования нужен процесс гниения и разложения, а какие-то представители могут прекрасно чувствовать себя в безвоздушном пространстве. Такие бактерии могут встречаться абсолютно везде на нашей планете.

Почвенные бактерии

Среда обитания таких бактерий – почва. Они представляют собой мельчайшие одноклеточные микроорганизмы. Обитают эти существа в тончайших водных пленках в почве вокруг корневых систем различных растений. Благодаря своим небольшим размерам, они могут расти, развиваться и адаптироваться к быстро изменяющимся условиям окружающей среды гораздо быстрее, чем другие более крупные и сложные микроорганизмы. Особенности их формы позволяют этим бактериям прекрасно приспосабливаться к среде обитания, поэтому их строение за всю историю эволюции осталось в неизменном виде. Обычно такие микроорганизмы имеют форму шара, палочки или имеют изогнутую геометрию.

В своем большинстве бактерии почвенные являются хемосинтетиками, т. е. питаются продуктами, полученными в результате окислительно-восстановительных реакций при участии углекислого газа. В процессе своей жизнедеятельности они производят вещества, необходимые для роста и развития других микроорганизмов.

Семейство почвенных микроорганизмов достаточно разнообразно. Здесь присутствуют такие бактерии, как:

  • Азотфиксаторы, которые способны усваивать молекулы азота и синтезировать его в органические соединения.
  • Почвенные бактерии гниения, которые способствуют распаду сложных веществ на простые. Эти микробы играют важную почвообразовательную роль.
  • Бактерии, способствующие восстановлению тяжелых металлов.
  • Бактерии брожения – масляно-, молочно- и уксуснокислые.
  • Болезнетворные микроорганизмы.

Азотофиксаторы

Уникальной способностью этой группы почвенных бактерий является умение усваивать молекулы азота из воздуха, что невозможно для растений. Однако в результате синтеза, произведенного азотофиксаторами, азот может усваиваться растениями. По образу существования эти бактерии делятся на свободноживущих и симбионтов, то есть тех, которым необходимо взаимодействовать с другими микроорганизмами.

Клубеньковые азотфиксаторы – симбионты, имеющие продолговатую овальную или палочкообразную форму. Обычно они вступают во взаимодействие с бобовыми культурами, такими как горох, чечевица, люцерна и т. д.

Поселившись в корневой системе, они образуют шарообразные узелки, которые видны даже невооруженным глазом, и живут внутри них. Симбиоз бактерий и растения приносит обоюдную выгоду. Данный вид микроорганизмов поставляет в корневища азот, в то время как питание почвенных бактерий происходит за счет переработки продуктов, получаемых непосредственно из растения и его отмерших частиц. Для многих растений клубеньковые уплотнения – единственный источник азотсодержащих соединений. Однако в средах с повышенным содержанием азота клубеньковые микроорганизмы прекращают вступать во взаимодействие с некоторыми растениями. Они очень избирательны и активируются только в определенных видах и сортах.

Сегодня принято делить фиксирующие азотные соединения организмы на две группы. Первая группа – это микробы, способные вступить в симбиоз с растениями. К их числу относят такие виды, как Rhizobium, Bradyrhizobium, Mezorhizobium, Sinorhizobium и Azorhizobium, которые могут жить и свободно, не вступая во взаимосвязь. Вторая группа почвенных ассоциативных азотфиксаторов – это более приспособленные к свободному существованию в почве. В качестве примера почвенных бактерий можно назвать Azospirillum, Pseudomonas, Agrobacterium, Klebsiella, Bacillus, Enterobacter, Flavobacterium Arthrobacter, Clostr >

Бактерии гниения

Сапрофиты (бактерии гниения) обычно живут на поверхности грунта. Они обитают в верхних слоях почвы, на отмерших частях корневых систем растений, на поверхности погибших личинок. В качестве источника своей жизнедеятельности используют органическую мертвую ткань: в огромных количествах обнаруживаются на останках животных, упавших листьях и плодах растений. Результатом их жизнедеятельности является быстрое разложение и утилизация мертвых тканей. Они в значительной степени улучшают состав почвы, наполняя ее питательными веществами.

К семейству сапрофитов относится большая часть представителей почвенных бактерий. Существует два вида подобных микроорганизмов. Одни из них живут в бескислородных средах, а другим для полноценной жизнедеятельности обязательно нужен воздух. Это свободноживущие организмы, которые никогда не вступают в симбиоз.

К питательным органическим соединениям сапрофиты достаточно требовательны. Любой перерабатываемый ими продукт должен содержать определенные компоненты, что влияет на процесс их роста, развития и жизнедеятельности. Обязательные питательные соединения – это:

  • азотосодержащие соединения или определенный набор аминокислот;
  • витамины, белковые и углеводные соединения;
  • пептиды, нуклеотиды.

Как происходит процесс

Гниение органики происходит благодаря тому, что микроорганизмы, способствующие разложению материи, обладают метаболизмом. В результате этого процесса разрушаются химические связи молекул ткани, содержащей соединения азота. Питание микроорганизмов осуществляется вследствие захвата элементов, содержащих белок и аминокислоты. В результате ферментации продуктов, поступающих в организм бактерии, из белковых соединений высвобождается аммиак и сероводород. Таким образом микроорганизмы получают энергию для своего дальнейшего существования.

В природе бактерии гниения играют первостепенную роль в восстановлении и минерализации почвы. Отсюда и часто встречающееся название бактерий этого типа – редуцент. В процессе своей жизнедеятельности редуценты превращают органические вещества и биомассы в простейшие соединения СО2, Н2О, NH3 и другие. Среди гнилостных бактерий широко распространены аммонифицирующие микроорганизмы – неспорообразующие энтеробактерии, бациллы, спорообразующие клостридии.

Бактерии брожения

Способ питания почвенных бактерий брожения заключен в переработке органических сахаров. В естественной природной среде они обычно встречаются на поверхности растений, плодов и ягод, в молочных продуктах и в различных слоях эпителия птиц, животных, рыб и человека. В результате их жизнедеятельности происходит скисание продуктов с образованием молочной кислоты. Благодаря такому свойству их повсеместно используют в приготовлении всевозможных заквасок и кисломолочных продуктов. Молочнокислые бактерии также являются первостепенными участниками при заготовительном силосовании растительных кормов для сельскохозяйственных животных.

Почвенные молочнокислые микроорганизмы преимущественно имеют две формы – могут быть вытянуты в виде палочки или иметь сферическую форму.

Болезнетворные бактерии

Далеко не все микроорганизмы, обитающие в грунте, полезны для человека или животных. Существуют некоторые крайне опасные виды. Чаще всего это паразитирующие симбионты. Вред почвенных бактерий может быть проявлен в виде возникновения самых тяжелых заболеваний, таких как тиф, холера, туберкулез, сибирская язва и другие болезни. Болезнетворные микроорганизмы могут обнаруживаться на абсолютно любых поверхностях. Излюбленное место обитания в природе – застойные водоемы, организмы животных, птиц и рыб.

Бактерии гниения (сапрофиты) и другие условно патогенные микробы, попавшие в организм человека из окружающей среды, при наличии определенных условий могут вызвать тяжелые заболевания как у людей, так и у животных. Особенно подвержены такому воздействию люди с ослабленным иммунитетом и пациенты, страдающие от авитаминоза, неврозов и постоянного переутомления. Бывают случаи, когда вызванные резидентной микрофлорой заболевания заканчиваются летальным исходом.

Сапрофитные микроорганизмы, попав в организм человека, могут вызвать бактериальный шок, развивающийся вследствие поступления в кровь большого количества условно патогенных микроорганизмов и продуктов их жизнедеятельности. Обычно подобное явление происходит на фоне длительных очаговых инфекций.

Читайте также:  Линия для производства перчаток

Нередко представители резидентной почвенной микрофлоры способствуют возникновению гнойно-воспалительных процессов и абсцессов в организме.

Однако отрицательное воздействие условно патогенные микроорганизмы на организм живых существ могут оказать лишь при появлении благоприятных для их жизнедеятельности факторов. Для улучшения земельных почв, их обогащения и минерализации такая микрофлора необходима. Ведь без нее земли вовсе перестанут быть плодородными, а это, несомненно, станет негативным фактором для естественного круговорота жизни на Земле.

Борьба с вредоносными гостями

Хорошо известно, что сапрофиты, попав в продукты питания, вызывают их порчу. Как правило, такой процесс сопровожден большим выделением ядовитых для человека веществ, сероводорода и аммиака. Субстрат может нагреваться, доходя порой до самовозгорания. Поэтому человек создает условия, в которых микроорганизмы, вызывающие гниение и разложение, теряют способность к размножению или вовсе погибают. К подобным мерам относится пастеризация, стерилизацию, соление, копчение, кипячение, засахаривание или высушивание продуктов.

Функции и значение бактерий

Почвенные микроорганизмы способствуют быстрому разложению неживой органической субстанции, образуя при этом высококачественный гумус в различных слоях грунта, необходимый для нормального развития растений. Некоторые бактерии способны ассимилировать почвенные источники азота, фосфора и железа. Они могут трансформировать или перераспределять метаболиты между частями растения. Эндорфитные микроорганизмы, живущие во внутренних слоях корневой системы растений, оказывают положительное влияние на их рост и развитие. Данная группа бактерий не только борется с патогенными микроорганизмами, но даже способна продуцировать для растения витамины и гормоны. Поэтому важность почвенной микрофлоры сложно переоценить.

Почвы в том виде, в котором они есть на планете Земля, – результат работы бактериальных сообществ. Смешивая частицы горных пород и минералов с продуктами переработки отмершей органики и с продуктами собственной жизнедеятельности, микроорганизмы шаг за шагом превращали безжизненные скалистые пустыни в покрытые плодородным гумусом территории, которые стали базой для реализации нового витка круговорота веществ на планете. Бактерии в почве – основные двигатели этого круговорота.

Как бактерии попали в почву

Строго говоря, почвенные бактерии – это и есть часть почвы. Вернее, не самой почвы, а ее плодородного слоя – гумуса. В одной чайной ложке гумуса живет более одного миллиарда микроорганизмов, которые постоянно заняты либо определенной стадией разложения отмершей органики, либо фиксацией поступающих в почву неорганических веществ и построением из них сложных органических молекул.

Группа почвенных бактерий ведет свою историю с тех времен, когда представители органической жизни (растения и животные) только начали выбираться на сушу и оставлять на скалистых морских берегах остатки своей жизнедеятельности. Вот эти остатки и стали первым домом почвенных бактерий. Научившись преобразовывать органику в почву, микроорганизмы живут в ней и поныне, приспосабливаясь к меняющимся условиям окружающей среды.

В микробиологии существует функциональное деление почвенных микробов, которое строится на том, какое экологическое значение имеют те или иные микроорганизмы в процессе преобразования неорганических и органических веществ:

  1. Деструкторы – бактерии, которые живут в почве и минерализуют (разлагают) органические соединения, попавшие в верхние слои почвы. Их роль – превращать останки животных и растений в неорганические вещества.
  2. Азотфиксирующие или клубеньковые микробы – симбионты растений. Их роль заключается в том, что только виды клубеньковых микробов могут связывать неорганический атмосферный азот и снабжать им растение. Тем самым азотфиксаторы обогащают минеральный состав растительных тканей.
  3. Хемоавтотрофы – собирают имеющуюся неорганику в органические молекулы, используя при этом энергию химических реакций, которые протекают внутри самой бактерии. Это группа автотрофов. Их роль заключается в том, что они могут обработать накапливающиеся в почве неорганические вещества и «кормить» ими растения.

Кроме названных, в почве присутствуют и другие виды бактерий, которые не играют особой роли и не имеют значения при формировании плодородного слоя, но могут стать причиной губительного поражения живых тканей. Это болезнетворные микробы, которые попадают в почву с зараженными органическими остатками или переносятся с аэрозолями (воздушные потоки с мелкодисперсной взвесью).

Деструкторы

Это одна из самых многочисленных групп, в которой могут быть как аэробные (дышащие кислородом) бактерии, так и анаэробные (дышащие за счет протекания других реакций). Какие из них преобладают – сказать сложно. Микробиологи не придают значения выведению таких соотношений.

В группу деструкторов входят не только бактерии. Также активно разлагают органику так называемые детритофаги (жуки-скоробеи, термиты, дождевые черви и т.д.). Их роль заключается в первичном разложении органических молекул на более простые соединения, которые после обрабатывают бактерии-редуценты.

Редуценты (сапротрофы) осуществляют окончательное глубокое разложение, в результате которого создается особая микрофлора, питающая растительность определенной экосистемы.

  1. В почве широко распространены представители класса Клостридии. Известны и азотфиксирующие Клостридии, и Клостридии-редуценты. Среди этого класса микроорганизмов встречаются и болезнетворные патогенные микробы, но в почве такие могут присутствовать только в качестве аллохтонных (случайных) прокариотов. Известные почвенные Клостридии – анаэробные микробы, роль которых заключается в высвобождении углекислого газа из органических сахаров, содержащихся в клетках тканей погибших растений.
  2. Бациллы – еще одно семейство спорообразующих бактерий, которыми богаты почвы. Бациллы в основном аэробы и факультативные анаэробы, которые могут жить в присутствии кислорода, но не могут им дышать. Среди Бацилл обнаружены самые крупные виды, которые могут достигать размеров до 5 мкм. Самая известная Бацилла – Сенная палочка.
  3. Еще одно семейство бактерий, которое широко распространено в почвах – Псевдомонады. Это аэробные микроорганизмы, их не бывает среди анаэробов. Некоторые группы могут быть патогенными для растений. Псевдомонады могут расщеплять буквально любой субстрат. Их большое количество на очистных сооружениях, также они перерабатывают синтетические и токсичные отходы.

Основная зона обитания аэробных редуцентов – ризосфера, прикорневая область и область корней растений. Анаэробные редуценты живут в более глубоких слоях почв, куда плохо проникает кислород.

Азотфиксирующие обитатели почв

Одна из самых популярных в быту групп микроорганизмов – клубеньковые бактерии.

Клубеньковые микробы — единственные микроорганизмы, с помощью которых можно быстро и с минимальными трудозатратами насытить почвы азотом, что в свою очередь значительно повышает урожайность на таких полях.

К клубеньковым микробам относятся те же Клостридии (их аэробные роды), но основная группа клубеньковых прокариотов — это все-таки представители рода Ризобиум.

Этим клубеньковым микроорганизмам даже дают названия по названию того растения, мутуалистический симбиоз с которым образовывает данный клубеньковый микроб.

Суть симбиоза клубеньковых микробов и растений состоит в том, что колония бактерий формирует нарост на корне растения, через который растение получает преобразованный в аммиак молекулярный азот, а взамен снабжает колонию бактерий необходимыми ей питательными веществами.

Представители рода Ризобиум являются анаэробами. Создание анаэробных условий является также одной из задач, которые решают данные бактерии с помощью симбиоза с растениями.

Хемолитотрофы

Группа бактерий – автотрофов. Они единственные на планете организмы, которые могут из неорганических веществ продуцировать органические вещества. Их роль глобальна, поскольку в круговороте веществ их не могут заменить никакие другие организмы.

Автотрофы представлены пятью основными группами:

  • нитрифицирующие – аэробные микробы, которые включают неорганический азот в органические соединения;
  • окислители серы – аэробные прокариоты, включают неорганическую серу в органические молекулы;
  • железобактерии – аэробные ацидофильные (живут в средах с повышенной кислотностью) бактерии, включающие в состав органики неорганическое железо;
  • водородные и карбоксидобактерии – аэробные микроорганизмы, которые преобразуют молекулярный водород и углекислый газ.

Среди автотрофов нет патогенных видов, поскольку основная причина патогенности – продуцирование процессов гниения (разложения органической материи). Автотрофам органика в качестве пищи не интересна.

Патогенная микрофлора

Патогенные микроорганизмы в почве – результат фекального загрязнения. Практически все микробы, провоцирующие процессы гниения, попадают в почву из кишечников растений или животных.

Основные представители патогенной микрофлоры – колиформные прокариоты, так называемые бактерии группы кишечной палочки. Попадая в почву, эти микробы могут довольно долго существовать, если к ним перекрыт доступ прямых солнечных лучей и почва достаточно прогрета.

Особенно опасны для человека колиформные бактерии, попавшие в почвы из кишечника животных. Они вызывают те формы гниения органических тканей человека, которые сложно оперативно остановить.

Кроме того, большую опасность для животных и человека несут бактерии гниения, вырабатывающие высокотоксичные протеолитические ферменты, которые становятся причиной гангрены и столбняка.

Образование высшее филологическое. В копирайтинге с 2012 г., также занимаюсь редактированием/размещением статей. Увлечения — психология и кулинария.

Информация

Добавить в ЗАКЛАДКИ

Поделиться:

почвенные бактерии

Почвенные гифомицеты находятся в сложных взаимоотношениях не только с высшими растениями, но и с- почвенными бактериями и акти-ломицетами. Большая группа почвенных сапрофитных грибов в ризосфере растений способна ограничить развитие различных фитопатогенных микроорганизмов, в том числе паразитных грибов. Эти почвенные грибы используются в качестве биологических мер борьбы с возбудителями болезней сельскохозяйственных растений. Например, почвенный гриб триходерма древесная (Trichoderma lignorum) успешно используется против фитопатогенного гриба вер-тицилл далие (Verticillium daliliae) — возбудителя увядания (вилта) хлопчатника и других растений.[ . ]

Среди почвенных бактерий особую функцию выполняют нитрифицирующие (азотфиксирующие), играющие важнейшую роль в круговороте азота в природе. За год бактериями фиксируется 160—170 млн т азота.[ . ]

Среди почвенных бактерий особую функцию выполняют нитрифицирующие (азотфиксирующие), играющие важнейшую роль в круговороте азота в природе. За год бактериями фиксируется 160—170 млн т азота.[ . ]

Среди почвенных бактерий особую функцию выполняют нитрифицирующие (азотфиксирующие), играющие важнейшую роль в круговороте азота в природе. За год бактериями фиксируется 160—170 млн т азота.[ . ]

Анаэробные почвенные бактерии Clostridium также нуждаются в молибдене для фиксации азота.[ . ]

Мишу с тин Е. Н. Приспособление почвенных бактерий к температурным условиям климата. «Микробиология», т. 2, вып. 2, 1933.[ . ]

Вызывают заболевание различные виды почвенных бактерий, но чаще всего Pectobacterium phytophthorum Appel. (Erwinia phytophthora Berg, et al.), проникающие в клубни черед столоны, чечевички и различные повреждения.[ . ]

Оказавшись в земле, крахмал разрушается почвенными бактериями, а в результате реакции окислителя с содержащимися в почве солями металлов образуются перекиси, которые в течение 2-3 лет превращают пластмассы в углерод и воду. Сейчас ведутся работы по изготовлению новых пластмасс, содержащих до 50% кукурузного крахмала (Курьер ЮНЕСКО, 1990, № 7).[ . ]

Круглов Ю. В., Монейм А. Разложение гербицида атразина почвенными бактериями //Почвоведение. 1983. № 7.[ . ]

Черная ножка. Заболевание вызывается различными видами почвенных бактерий. Проявляется в виде загнивания нижней части стебля. Рост больных растений замедляется. Нижние листья становятся кожистыми, ломкими, с загнутыми вверх краями, верхние скручиваются и остаются мелкими. На поперечном срезе стебля видно почернение сосудов.[ . ]

Регистрация динамики численности интродуцентов, аборигенных почвенных бактерий и дыхательной активности почвы показала, что в почве, загрязненной нефтью, происходит активное размножение интродуцентов и их одновременное элиминирование (вероятно, выедание микрофауной). Расчетным путем, по размерам интенсивности дыхания в загрязненных почвах, показано, что в варианте без интродуцентов за 35 сут. опыта подвергалось окислению 1,7-8,9 % внесенной нефти. Интродукция дрожжей позволила увеличить этот показатель до 7-16%.[ . ]

Плодородие почвы создает «живое вещество», состоящее из мириад почвенных бактерий, микроскопических грибков, червей и прочей живности. Бактерии — микроскопические, преимущественно одноклеточные организмы разных форм. Питаются, используя различные органические вещества (ге-теротрофы) или создавая органические вещества своих клеток из неорганических (йвтотрофы). Причем обитают бактерии в почве как в верхних слоях, в присутствии атмосферного кислорода (аэробы), так и в нижних слоях, без атмосферного кислорода (анаэробы).[ . ]

Черные и коричневые пигменты встречаются в культурах некоторых почвенных бактерий, например азотобактера — микроорганизма, способного фиксировать азот атмосферы и тем самым обогащать почву азотом. Группа бурых актиномицетов образует бурые пигменты мела-ноидного характера. Черные пигменты чаще встречаются в культурах грибов.[ . ]

Из данных таблицы можно заключить, что оптимальные температуры развития бактерий повышаются с продвижением объектов исследования на юг. Это установлено Е. Н. Мишустиным для почвенных бактерий разных климатических зон [31 ]. В одном и том же пункте средняя температура активного ила значительно выше, чем активного слоя почвы. Однако в южных районах (Приморский, Фергано-Маргеланский) дефицит тепла меньше, и поэтому при благоприятном биохимическом показателе сточных вод микробиологические процессы протекают более интенсивно. Этому способствует то обстоятельство, что термофильным культурам свойственна повышенная биохимическая деятельность. С повышением у бактерий температурного оптимума на 10 °С их биохимическая эффективность примерно удваивается.[ . ]

Последействие атразина и симазина на другие культуры зависит от способности почвенных микроорганизмов разлагать эти гербициды: в засушливых условиях они сохраняют токсичность более длительное время, так как здесь слабее проявляется деятельность почвенных бактерий, чем при достаточном увлажнении. Остаточное количество триазиновых гербицидов зависит еще и от типа почвы, ее механического состава, содержания гумуса, влажности. На выщелоченном черноземе Тамбовской области последействие одинаковых доз атразина и симазина на второй год после их внесения проявляется в большей степени, чем на торфяной и серой лесной почвах Московской области. Урожай озимой ржи, посеянной после кукурузы, обработанной симазином (1,5 кг/га), на песчаной почве в Брянской области не снижался.[ . ]

Возникают наросты вследствие раздражения и усиленного деления клеток под влиянием почвенных бактерий Agrobacterium tumefacieus Conn. Обнаружить их в тканях пораженного органа можно только в начале заболевания, да и то в ограниченном количестве. При хранении больные корни легко загнивают.[ . ]

Для выявления бактерицидного действия прометрина и атразина на некоторых представителей почвенных бактерий были поставлены лабораторные опыты. Данные о влиянии применяемых гербицидов в опыте «in vitro» на отдельные группы микроорганизмов приводятся в таблице 5.[ . ]

При рассмотрении микробиологических процессов распада следует различать, проводились ли опыты со смешанной культурой почвенных бактерий или с чистыми штаммами. Наглядным примером служит сравнение дегидрохлорирования линдана, которое в естественной почве, следовательно, под влиянием многочисленных видов микроорганизмов, ведет прежде всего к образованию пентахлорциклогексена, в то время как под влиянием чистой культуры бактерий реакция протекает по-иному (рис. 8).[ . ]

Сотрапезничество — потребление разных веществ или частей их одного и того же ресурса. Например, взаимоотношения между различными видами почвенных бактерий-сапрофитов, перерабатывающих разные органические вещества из перегнивших растительных остатков, и высшими растениями, которые потребляют образовавшиеся при этом минеральные соли.[ . ]

Если же ветер дует в обратном направлении, от суши к морю, то он поднимает мельчайшие частицы пыли, на которых далеко в морские просторы уносятся почвенные бактерии.[ . ]

Противоречивы данные о способности почвы являться стоком для закиси азота. Американские исследователи на образцах почвы из шт. Айова установили, что почвенные бактерии способны с достаточно большой скоростью восстанавливать закись азота до молекулярного азота [81]. Однако аналогичные исследования, проведенные в Австралии, показали, что почвы способны поглощать закись азота в небольших количествах лишь при сильном переувлажнении или при аномально высоких ее концентрациях в воздухе [144]. Возможно, эти различия обусловлены наличием в почвах тех или иных микроорганизмов, влажностью и кислотностью почв и другими факторами [122, 133, 188].[ . ]

Микробы активно меняют состав почвы, изменяясь в то же время и сами. О количественной стороне этих изменений можно судить по тому, что только одна из групп почвенных бактерий (выделяющая двуокись углерода при разложении органического вещества) способна с поверхности одного гектара выделить в атмосферу 7500 м3 С02 за год.[ . ]

Попадание ионов тяжелых металлов в почву может иметь нежелательные последствия, так как ионы никеля, меди, кадмия способствуют ослаблению жизнедеятельности почвенных бактерий, в значительной степени определяющих плодородие почвы. Ионы свинца и кадмия приводят к уменьшению урожая и изменениям в химическом составе растений, причем р увеличением возраста растений концентрация в них кадмия, свинца и цинка повышается. Ионы металлов оказывают вредное воздействие на организм человека. Так, кадмий вызывает заболевание почек, а никель оказывает канцерогенное действие на различные органы человека [3].[ . ]

В засушливые периоды, а также зимой количество их в почве резко уменьшается, при этом они переходят в инертное состояние, в форму цист. Вопрос о роли простейших в почвенных процессах пока не выяснен. Одни исследователи считают, что простейшие, истребляя почвенные бактерии, оказывают вредное влияние на плодородие почвы, другие отмечают, что интенсивность микробиологических процессов в почве в присутствии Protozoa не только не ослабляется, но даже повышается. Возможно, что простейшие, поедая старые бактериальные клетки, облегчают размножение оставшихся и приводят к появлению значительного числа более молодых и биохимически активных особей.[ . ]

Другим загрязнителем атмосферы, потенциально опасным для защитного слоя озона, являются окислы азота, источниками которых служат промышленность, авиация и даже почвенные бактерии, метаболизирующие нитрат удобрений. Сложность оценки этой опасности заключается в том, что в отличие от загрязнения океана она труднее поддается непосредственному наблюдению. Выводы же, сделанные на основании расчетных данных, иногда оказываются противоречивыми из-за того, что не известны достоверно константы скоростей всех реакций, влияющих на равновесие озон 5 кислород.[ . ]

Наибольший ущерб от кислотных осадков наблюдается в лесах с глинистой и алюмосиликатными почвами, из которых кислые воды вымывают ионы алюминия. Последние уничтожают полезные почвенные бактерии, через корневую систему поступают в древесину и далее действуют как клеточные яды. В нормальных (не кислых) естественных условиях соединения алюминия практически нерастворимы и потому безвредны. По аналогичной схеме при подкислении среды начинается действие и других токсичных элементов, в том числе ртути и свинца.[ . ]

ПДК нефтепродуктов в почвах в настоящее время отсутствует. Однако, по известным данным, их содержание в количестве до 500 мг/кг почвы не оказывает существенного влияния на общее количество почвенных бактерий и способность почвы к самоочищению.[ . ]

В творческом содружестве с микробиологом 3. Н, Ка нашевич (Научно-исследовательский институт земледелия) мы провели опыты по оценке действия гербицидов на некоторые физиологические группы почвенных бактерий. Об активности нитрифицирующих бактерий в почве судили по накоплению нитратов. Опыты проводили в полевых и лабораторных условиях.[ . ]

Загрязнение атмосферы естественным путем происходит в результате: пыльных бурь, извержений вулканов, лесных пожаров, эрозии почвы, биологических разложений, в частности, жизнедеятельности почвенных бактерий. В атмосферу при этом попадают как твердые, так и газообразные вещества.[ . ]

Гидроксилирование происходит в почве сравнительно редко. Часто у одного и того же соединения гидроксильные группы вводятся в разные положения, например фенильного кольца, под влиянием разных почвенных микроорганизмов. Примером может быть гербицид 2М-4Х, у которого под влиянием чистой культуры Aspergillus niger гидроксильная группа вводится в положение 5 с образованием 4-хлорч2-метил-5-оксифеноксиук-суоной кислоты. В дальнейшем в превращении гербицида этот гриб не участвует. Наоборот, смешанные культуры почвенных бактерий гидроксилируют 2М-4Х в положении 6 и метаболизируют его затем вплоть до минерализации (рис. 16).[ . ]

Из присутствующих в атмосфере кислородных соединений азота загрязнителями являются окись азота, двуокись азота и азотная кислота. В основном опп образуются в результате разложения азотсодержащих веществ почвенными бактериями. Ежегодно во всем мире в атмосферу поступает 50 • 107 т окиси азота природного происхождения, тогда как в результате деятельности человека — лишь 5-107 т окиси и двуокиси азота. В атмосфере Земли природное содержание двуокиси азота составляет 0,0018— 0,009 мг/м8, окиси азота 0,002 мг1м3; время жизни двуокиси азота в атмосфере 3 дня, окиси 4 дня [1—3].[ . ]

Установлено, что в превращениях (детоксикации) пестицидов в почве имеют значение гидролитические и окислительные процессы, а также фотохимические превращения. Ведущая роль в разложении пестицидов принадлежит почвенным микроорганизмам, которые разрушают их до образования простейших продуктов. Например, некоторые почвенные бактерии, грибы и актиномицеты используют в качестве источника углерода гербицид далапон.[ . ]

Все органические удобрения, образующиеся в результате жизнедеятельности организмов, содержат атомы углерода. Растения усваивают питательные элементы органических удобрений только после разложения последних почвенными бактериями и грибами до неорганических веществ. Тем самым органические удобрения обеспечивают развитие бактерий и повышают плодородие почв. Разложение органических удобрений до веществ, доступных растениям, протекает сравнительно медленно.[ . ]

В 1912 г. швейцарец Р. Франсе выступил в «Почвоведении» с идеей о специфической форме сосуществования растительных п животных организмов, приспособленных к условиям обптаиия в почве; по аналогии с водным сообществом «планктоном» он назвал совокупность почвенных организмов «геобионтов»— «эдафоиом». Последний в почве разделяется на два яруса: более глубокий, не страдающий от зимних холодов и мало страдающий от засухи, и поверхностный, в котором отчетливо проявляются эти отрицательные экологические факторы. Кроме хорошо известных и до него почвенных бактерий, насекомых, дождевых червей, Франсе установил в почве большое видовое разнообразие и высокую численность грибов, простейших, нематод и др. Он привел некоторые данные о глубине проникновения разных геобионтов в почву и связи их с характером растительности. Ограниченность материала не позволила Франсе увидеть зональный характер эдафоиа.[ . ]

Сточные воды, имеющие минеральные загрязнения, как правило, не следует направлять на поля орошения, так как они или совсем не содержат питательных веществ, или содержат ничтожное их количество; в то же время в большинстве случаев в них имеются вредные для почвенных бактерий вещества или соли, разрушающие структуру почвы.[ . ]

Все остальные организмы влияют на цикл азота только после ассимиляции его в состав своих клеток. Азот фиксируют также пурпурные и зеленые фотосинтезирующие бактерии, различные почвенные бактерии.[ . ]

Разложение остаточных инсектицидов и гербицидов находящимися в почве микроорганизмами — один из важнейших процессов самоочищения природы [189]. Однако другая сторона этого процесса заключается в том, что пестициды, подобно антибиотикам, нарушают нормальную жизнедеятельность почвенных бактерий, и это ухудшает плодородие почв. Так, по данным бельгийских ученых, постоянно используемые для свекловичных культур пестициды снижают биологическую активность почвы (микробную и ферментативную), увеличивают период минерализации азота и в конечном счете ухудшают сахаристость свеклы. В связи с этим важное значение приобретают исследования по экотоксикологии почвы [190].[ . ]

Биогеохимический круговорот азота не менее сложен, чем углерода и кислорода, и охватывает все области биосферы. Поглощение его растениями ограничено, так как они усваивают азот только в форме соединения его с водородом и кислородом. И это при том, что запасы азота в атмосфере неисчерпаемы (78% от ее объема). Редуценты (деструкторы), а конкретно почвенные бактерии, постепенно разлагают белковые вещества отмерших организмов и превращают их в аммонийные соединения, нитраты и нитриты. Часть нитратов попадает в процессе круговорота в подземные воды и загрязняет их.[ . ]

Однако, когда необходимо получать более высокие урожаи, нужно вносить минеральные удобрения. Тогда наблюдается очень своеобразное явление: при внесении азота в почву интенсивность фиксации снижается, склонный к приспособлению азотобактер предпочитает использовать азот удобрений, а не азот воздуха. Следовательно, налицо противоречие между энергичной фиксацией азота почвенными бактериями и интенсивным земледелием.[ . ]

Пески и песчаные почвы, содержащие большое количество монтмориллонита и гидрослюды, обладают лучшими условиями для произрастания растений, так как азотистые соединения даже в гидролизуемой форме усваиваются ими очень медленно. Благодаря же сорбционным свойствам монтмориллонита и отчасти гидрослюды перегнойные вещества удерживаются в почвах длительное время, в течение которого содержащийся в них азот переводится почвенными бактериями в используемую растениями неорганическую форму. Таким образом, пески обладают своеобразными, только им присущими свойствами, которые необходимо учитывать при изучении влияния их на рост и развитие растений.[ . ]

По типу своего питания микробы, населяющие почву, относятся главным образом к метатрофам и прототрофам. Паратро-фы — случайные гости в почве; если же они в нее и попадают, то, не встречая для своего развития подходящих условий, быстро погибают. Что же касается микробов, постоянно живущих в почве, то это не пассивные пассажиры, прикрепившиеся к частицам почвы. Микробы активно меняют состав почвы, изменяясь в то же время и сами. О мощности этих изменений можно судить по тому, что только одна из групп почвенных бактерий выделяющая углекислый газ при разложении органического вещества) способна с поверхности 1 га выделить в атмосферу 7 500 ООО л углекислоты за год. Поэтому неудивительно, что все процессы выветривания горных пород в значительной степени связаны с жизнедеятельностью микробов, так же как и ряд других почвообразовательных процессов.[ . ]

Более универсальная мера обилия — биомасса. Этот показатель был успешно использован во многих исследованиях, в том числе в работах Пислу (Pielou, 1966) и Кемптона (Kempton, 1979). Конечно, учет биомассы требует времени. Например, при изучении растительных сообществ, растения состригают, разбирают по видам, затем высушивают и взвешивают. Ис-смотря на такие сложности, измерение биомассы дает много преимуществ. Это более прямая оценка использования ресурса, чем число особей, даже в тех случаях, когда последние легко различимы (Harvey, Godfray, 1987). Эта мера непрерывная, поэтому больше подходит для использования в логнормальной модели. Смысл ее легко понятен, она легко применима к различным группам организмов. Наконец, она позволяет сравнивать разнообразие организмов разного таксономического уровня. Интересно, что различия между микробами и млекопитающими становятся еще меньше при рассмотрении еще более фундаментальной единицы использования ресурсов — энергетического потока (May, 1981). Одно из важнейших неудобств использования биомассы как меры обилия в том, что материал почти невозможно собирать случайным образом.[ . ]

Оксид углерода (СО), в отличие от диоксида углерода, не оказывает заметного влияния на потоки солнечной и тепловой радиации, но быстрый, в основном антропогенный, рост его содержания и значительная, как и у метана, роль в фотохимии озона и других МГ в тропосфере приводят к необходимости мониторинга СО в глобальной атмосфере и дальнейшего количественного исследования его атмосферного цикла. Значительные амплитуды сезонного изменения концентрации СО в тропосфере и различия в его содержании по полушариям связаны с малым временем жизни. Фазы сезонного изменения СО в тропосфере северного полушария почти одинаковы с таковыми для С02г однако максимум концентрации СО в конце зимы по сравнению с максимумом концентрации С02 в большей степени обусловлен сжиганием разных видов топлива, а минимум СО в конце лета считается связанным с деятельностью почвенных бактерий. Меньшая интенсивность этих источников и стоков в южном полушарии приводит к меньшему содержанию СО в тропосфере [38].[ . ]

Для предупреждения попадания удобрений в водоисточники необходимо: соблюдение соответствия норм внесения удобрений потребностям растений; установление оптимальных сроков внесения удобрений с учетом биохимических особенностей почвы; дробное внесение удобрений в период вегетации (особенно для почв легкого механического состава); внесение удобрений с оросительной водой, что уменьшает их дозу. Так, внесение азотных удобрений с водой при дождевании позволяет снизить обычную дозу вдвое; применение концентрированных форм удобрений, уменьшающее внесение в почву балластных веществ; использование медленно действующих азотных удобрений в виде гранул с защитой оболочкой или труднорастворимых удобрений типа конденсатов мочевины, отдающих питательные вещества в почву постепенно, устойчивых к вымыванию и имеющих высокий коэффициент полезного действия; применение ингибиторов нитрификации, снижающих активность почвенных бактерий, переводящих аммонийный азот в легкорастворимую нитратную форму; исключение хранения удобрений под открытым небом.[ . ]

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
Adblock detector