No Image

Формула нагревания и охлаждения

СОДЕРЖАНИЕ
0 просмотров
10 марта 2020

Тестирование онлайн

Термодинамика

Раздел молекулярной физики, который изучает передачу энергии, закономерности превращения одних видов энергии в другие. В отличие от молекулярно-кинетической теории, в термодинамике не учитывается внутреннее строение веществ и микропараметры.

Термодинамическая система

Это совокупность тел, которые обмениваются энергией (в форме работы или теплоты) друг с другом или с окружающей средой. Например, вода в чайнике остывает, происходит обмен теплотой воды с чайником и чайника с окружающей средой. Цилиндр с газом под поршнем: поршень выполняет работу, в результате чего, газ получает энергию, и изменяются его макропараметры.

Количество теплоты

Это энергия, которую получает или отдает система в процессе теплообмена. Обозначается символом Q, измеряется, как любая энергия, в Джоулях.

В результате различных процессов теплообмена энергия, которая передается, определяется по-своему.

Нагревание и охлаждение

Этот процесс характеризуется изменением температуры системы. Количество теплоты определяется по формуле

Удельная теплоемкость вещества с измеряется количеством теплоты, которое необходимо для нагревания единицы массы данного вещества на 1К. Для нагревания 1кг стекла или 1кг воды требуется различное количество энергии. Удельная теплоемкость – известная, уже вычисленная для всех веществ величина, значение смотреть в физических таблицах.

Теплоемкость вещества С – это количество теплоты, которое необходимо для нагревания тела без учета его массы на 1К.

Плавление и кристаллизация

Плавление – переход вещества из твердого состояния в жидкое. Обратный переход называется кристаллизацией.

Энергия, которая тратится на разрушение кристаллической решетки вещества, определяется по формуле

Удельная теплота плавления известная для каждого вещества величина, значение смотреть в физических таблицах.

Парообразование (испарение или кипение) и конденсация

Парообразование – это переход вещества из жидкого (твердого) состояния в газообразное. Обратный процесс называется конденсацией.

Удельная теплота парообразования известная для каждого вещества величина, значение смотреть в физических таблицах.

Количество теплоты, которое выделяется при сгорании вещества

Удельная теплота сгорания известная для каждого вещества величина, значение смотреть в физических таблицах.

Для замкнутой и адиабатически изолированной системы тел выполняется уравнение теплового баланса. Алгебраическая сумма количеств теплоты, отданных и полученных всеми телами, участвующим в теплообмене, равна нулю:

При нагревании тел их температура увеличивается, следовательно, увеличивается и их внутренняя энергия.

КОЛИЧЕСТВО ТЕПЛОТЫ, НЕОБХОДИМОЕ ДЛЯ НАГРЕВАНИЯ 1 КГ ВЕЩЕСТВА НА 1 ГРАДУС ЦЕЛЬСИЯ, НАЗЫВАЕТСЯ УДЕЛЬНОЙ ТЕПЛОЕМКОСТЬЮ. [c]=Дж/кг´град.

Удельная теплоемкость – характеристика данного вещества. Ее значение можно найти в таблицах удельных теплоемкостей.

Чтобы найти количество теплоты, необходимое для нагревания тела, надо удельную теплоемкость вещества, из которого состоит тело, умножить на массу этого тела и на изменение температуры.

,

где t2 – конечная температура тела,

t1 – его начальная температура.

Охлаждение тела – процесс обратный нагреванию. Для его описания используется та же формула, что и для нагревания. Знак "минус", полученный при вычислениях говорит о том, что тело отдает теплоту, "плюс" – получает.

Читайте также:  Газовая колонка в доме плюсы и минусы

Для вычисления количества теплоты, полученного телом при нагревании или отданного при охлаждении используется также ТЕПЛОЕМКОСТЬ ТЕЛА – КОЛИЧЕСТВО ТЕПЛОТЫ, НЕОБХОДИМОЕ ДЛЯ НАГРЕВАНИЯ ТЕЛА НА ОДИН ГРАДУС ЦЕЛЬСИЯ. [C]=Дж/град.

Если в теплообмене участвуют несколько тел и энергия не получается от окружающих тел, но и не отдается им, а происходит только теплообмен между телами системы, то в соответствии с законом сохранения энергии можно записать:

.

Это уравнение называется уравнением теплового баланса. Если же система тел получает или отдает окружающим телам теплоту, то сумма всех количеств теплоты, которыми обмениваются тела системы, будет равна полученной извне или отданной теплоте.

Плавление и кристаллизация.

Одно и то же вещество может находиться при определенных условиях в твердом, жидком и газообразном состояниях, называемых агрегатными.

ПЕРЕХОД ИЗ ТВЕРДОГО СОСТОЯНИЯ В ЖИДКОЕ НАЗЫВАЕТСЯ ПЛАВЛЕНИЕМ. Плавление происходит при температуре, называемой температурой плавления. Температуры плавления веществ различны, т.к. различно их строение. Температура плавления – табличная величина. Во время процесса плавления температура не изменяется, т.к. подводимая теплота расходуется на разрушение кристаллической решетки твердого тела.

КОЛИЧЕСТВО ТЕПЛОТЫ, НЕОБХОДИМОЕ ДЛЯ ПРЕВРАЩЕНИЯ 1 КГ ТВЕРДОГО ТЕЛА, ВЗЯТОГО ПРИ ТЕМПЕРАТУРЕ ПЛАВЛЕНИЯ, В ЖИДКОСТЬ ТОЙ ЖЕ ТЕМПЕРАТУРЫ, НАЗЫВАЕТСЯ УДЕЛЬНОЙ ТЕПЛОТОЙ ПЛАВЛЕНИЯ. [l]=Дж/кг.

Чтобы рассчитать количество теплоты, необходимое для плавления тела, надо удельную теплоту плавления умножить на массу тела.

КРИСТАЛЛИЗАЦИЕЙ НАЗЫВАЕТСЯ ПРОЦЕСС ПЕРЕХОДА ВЕЩЕСТВА ИЗ ЖИДКОГО СОСТОЯНИЯ В ТВЕРДОЕ. Температура плавления вещества равна температуре его кристаллизации. Как и в процессе плавления, при кристаллизации температура не изменяется, т.к. при кристаллизации выделяется та теплота, которая когда – то была затрачена на плавление тела. Она и поддерживает температуру кристаллизующегося тела постоянной. В соответствии с законом сохранения энергии при расчете количества теплоты, выделившейся при кристаллизации, используется та же формула, что и при плавлении. Чтобы показать направление теплообмена, в нее вводится знак "минус".

Испарение и конденсация.

ИСПАРЕНИЕМ НАЗЫВАЕТСЯ ПРОЦЕСС ПЕРЕХОДА ВЕЩЕСТВА ИЗ ЖИДКОГО СОСТОЯНИЯ В ГАЗООБРАЗНОЕ. Молекулы жидкости притягивают друг друга, поэтому из жидкости могут вылететь только самые быстрые молекулы, обладающие большой кинетической энергией. Если нет притока тепла, то температура испаряющейся жидкости понижается. Скорость испарения зависит от температуры жидкости, площади ее поверхности, от рода жидкости и наличия ветра над ее поверхностью.

КОНДЕНСАЦИЕЙ НАЗЫВАЕТСЯ ПРЕВРАЩЕНИЕ ЖИДКОСТИ В ПАР. В открытом сосуде скорость испарения превышает скорость конденсации. В закрытом сосуде скорости испарения и конденсации равны.

При нагревании жидкости на дне и стенках сосуда начинается выделение растворенного в жидкости воздуха. Внутрь этих пузырьков происходит испарение жидкости. Под действием архимедовой силы пузырьки отрываются от стенок сосуда и всплывают вверх. Они попадают в еще непрогретую жидкость, пар конденсируется. Пузырьки схлопываются. При этом слышен характерный шум.

Читайте также:  Виды обоев для стен и их характеристика

При прогревании жидкости конденсация пара в пузырьках прекращается. И пузырек пара, увеличиваясь в размерах из – за продолжающегося испарения, достигает поверхности жидкости, лопается, выбрасывая содержащийся в нем пар в атмосферу. Жидкость кипит. КИПЕНИЕ – ЭТО ПАРООБРАЗОВАНИЕ, ПРОИСХОДЯЩЕЕ ПО ВСЕМУ ОБЪЕМУ ЖИДКОСТИ. Кипение происходит при температуре, называемой температурой кипения, зависящей от рода жидкости и давления над ее поверхностью. При понижении внешнего давления температура кипения жидкости понижается. Во время процесса кипения температура жидкости остается постоянной, т.к. подводимая энергия расходуется на преодоление взаимного притяжения молекул жидкости.

КОЛИЧЕСТВО ТЕПЛОТЫ, НЕОБХОДИМОЕ ДЛЯ ПРЕВРАЩЕНИЯ 1 КГ ЖИДКОСТИ В ПАР ТОЙ ЖЕ ТЕМПЕРАТУРЫ, НАЗЫВАЕТСЯ УДЕЛЬНОЙ ТЕПЛОТОЙ ПАРАОБРАЗОВАНИЯ. [L] = Дж/кг. Удельная теплота парообразования у разных жидкостей различна и ее численное значение – табличная величина. Чтобы рассчитать количество теплоты, требующееся для испарение жидкости, надо удельную теплоту парообразования этой жидкости умножить на массу испарившейся жидкости.

При конденсации пара выделяется такое же количество теплоты, которое было затрачено на ее испарение. Интенсивная конденсация пара происходит при температуре конденсации, равной температуре кипения.

Сгорание топлива.

При сгорании топлива идет процесс образования молекул углекислого газа из атомов углерода топлива и атомов кислорода атмосферного воздуха. Этот окислительный процесс сопровождается выделением большого количества теплоты. Для характеристики разных видов топлива вводится УДЕЛЬНАЯ ТЕПЛОТА СГОРАНИЯ ТОПЛИВА – КОЛИЧЕСТВО ТЕПЛОТЫ, ВЫДЕЛЯЮЩЕЕСЯ ПРИ ПОЛНОМ СГОРАНИИ 1 КГ ТОПЛИВА. [q]=Дж/кг. Как и все остальные удельные величины, удельная теплота сгорания топлива – табличная величина. Для вычисления количества теплоты, выделяющейся при полном сгорании топлива, надо удельную теплоту сгорания топлива умножить на массу топлива.

Сгорание топлива – необратимый процесс, т.е. он протекает только в одном направлении.

Выясним, как можно вычислять изменение внутренней энергии при теплообмене. Чтобы возможно точнее это сделать, нужно свести к минимуму неучтенные потери теплоты при теплообмене. Поэтому при научных исследованиях теплообмен осуществляют в калориметре (рис. 6.1), применение которого позволяет достаточно точно определять теплоту отданную или полученную телом в процессе теплообмена.

Калориметр состоит из двух сосудов: внешнего и внутреннего. Внутренний сосуд делается из хорошего проводника тепла (латуни, меди), так как его температура должна быть такой же, как у налитой в него жидкости.

Наружный сосуд предохраняет внутренний сосуд от потерь тепла путем конвекции и излучения. Поэтому его обычно окрашивают белой краской или делают из блестящей жести.

Читайте также:  Как сделать наклейку с помощью принтера

Чтобы предохранить внутренний сосуд от потерь тепла путем теплопроводности, его ставят на деревянные подставки (у дерева плохая теплопроводность). Во внутренний сосуд помещают мешалку (из такого же материала, как сосуд) и термометр.

Теплообмен осуществляют следующим образом. С помощью весов определяют массу внутреннего сосуда калориметра и мешалки, а затем и массу налитой в него жидкости, например воды. После этого измеряют массу тела, нагревают его до известной температуры и, заметив начальную температуру жидкости, опускают нагретое тело в калориметр. Измерив конечную температуру жидкости, можно подсчитать, сколько теплоты отдало тело в процессе теплообмена.

С помощью таких опытов легко установить, что изменение внутренней энергии какого-либо тела прямо пропорционально его массе и изменению температуры тела

здесь с — коэффициент пропорциональности. Поскольку изменение внутренней энергии при теплообмене оценивается количеством теплоты имеем

Начальную температуру тела обычно обозначают а конечную Тогда в случае нагревания тела а в случае охлаждения

Опыты показывают, что зависит от рода вещества, от внешних условий, от агрегатного состояния вещества. Эти зависимости и выражаются коэффициентом с в формулах (6.1) и (6.2).

Величина с, характеризующая зависимость изменения внутренней энергии тела при нагревании или охлаждении от рода вещества и от внешних условий, называется удельной теплоемкостью вещества. Удельная теплоемкость вещества измеряется количеством теплоты, необходимым для нагревания единицы массы вещества на единицу температуры:

Выведем единицу удельной теплоемкости в СИ:

В СИ за единицу удельной теплоемкости принимается удельная теплоемкость такого вещества, для которого при нагревании массы в 1 кг на 1 К затрачивается 1 Дж энергии. При небольших изменениях температуры удельную теплоемкость можно считать постоянной. Для решения задач ее берут из таблиц.

Следует иметь в виду, что при определении количества теплоты, необходимой для нагревания или выделенной при охлаждении тела, иногда пользуются теплоемкостью тела С — величиной, измеряемой количеством теплоты, необходимым для нагревания тела на единицу температуры. Следовательно,

Пользоваться при расчетах теплоемкостью всего тела особенно удобно, когда отдельные части тела сделаны из разного вещества. В СИ за единицу теплоемкости тела принимается (Покажите это с помощью формулы (6.3).)

Отметим еще, что удельная теплоемкость газа зависит от характера процесса, при котором происходит его нагревание. Например, удельная теплоемкость газа при постоянном давлении больше его удельной теплоемкости при постоянном объеме так как в первом случае нужно не только увеличить внутреннюю энергию газа, но и затратить энергию на выполнение работы, совершаемой газом над внешними телами в процессе его расширения (§ 5.10). Во втором же случае подведенная к газу теплота идет только на увеличение его внутренней энергии.

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
Adblock detector