No Image

Фотореле на полевом транзисторе

СОДЕРЖАНИЕ
0 просмотров
10 марта 2020

Две схемы наиболее простых фотореле показаны на рис. 3.5 и 3.6. Первой рассмотрим схему на рис. 3.5.

На транзисторах VT1 и VT2 собран эмиттерный повторитель. Такое схемное решение позволяет усиливать незначительный входной ток (сигнал) для управления нагрузкой с током потребления до 50 мА. В качестве нагрузки транзисторного каскада применяется маломощное электромагнитное реле К1 на рабочее напряжение, соответствующее напряжению питания узла. Для напряжения питания +12 В подойдет реле РЭС15 (паспорт РС4.591.004) или РЭС10 (РС4.524.302). Диод VD1 препятствует обратному току через обмотку реле. Источник питания для данного узла любой, в том числе бестрансформаторный. Чем больше напряжение питания схемы — тем чувствительнее она к световому потоку.

Рис. 3.5. Чувствительное фотореле на транзисторах

Световой поток, воздействующий на фоторезистор PR1, уменьшает его сопротивление до единиц кОм. Благодаря этому транзистор VT1 приоткрывается. Протекающий через переход эмиттер—коллектор ток открывает транзистор VT2. Многократно усиленный ток оказывается достаточным для срабатывания реле К1. Реле (подразумевается) своими контактами замыкает цепь нагрузки. Ток в цепи нагрузки не должен превышать максимального тока, указанного в паспортных данных реле. Для РЭС15 он составляет 0,2 А.

В вышеописанном случае чувствительность узла максимальна. В схему можно ввести узел регулировки на переменном резисторе R1 (показан пунктиром). Тогда в нижнем (по схеме) положении движка переменного резистора R1 чувствительность узла минимальна (равна нулю, так как транзисторы заперты), а в верхнем (по схеме) положении движка R1 — чувствительность стремится к максимальной.

На рис. 3.6 представлена аналогичная схема с транзистором прямой проводимости (р-п-р). Принцип ее работы тот же. Однако следует заметить, что чувствительность второй схемы будет ниже, чем первой, из-за применения в первом варианте эмиттер- ного повторителя, но все равно достаточной для применения фотореле в бытовых условиях.

Каждый радиолюбитель может поэкспериментировать с этими схемами. При направлении светового потока на рабочую поверхность фоторезистора (например, от настольной лампы) срабатывает реле. Это можно услышать по характерному щелчку. При загораживании светового потока, например рукой, реле (и нагрузка) обесточиваются.

Рис. 3.6. Второй вариант транзисторного фотореле

На основе этих простейших узлов можно конструировать приборы любой сложности, от фотореле до охранных систем. Именно по такому принципу работают турникеты в метро.

Вместо фоторезисторов можно применять термисторы — терморезисторы с отрицательным температурным коэффициентом сопротивления. Теперь датчик будет реагировать не на свет, а на изменение температуры. Следует учитывать инерционность изменения сопротивления в зависимости от температуры среды в большинстве популярных и доступных приборах типа KMT, ММТ.

Читайте также:  Прибор для нарезки овощей кубиками

Вместо указанных кремниевых транзисторов подойдут также любые маломощные кремниевые и германиевые приборы. Хорошие результаты (по уровню чувствительности) удалось получить при использовании в этих схемах, соответственно, германиевых приборов МП35 и МП41. Германиевые транзисторы имеют изначально высокий начальный ток, но это не мешает использовать их именно в этой разработке. Такие транзисторы ненужным «хламом» лежат в запасниках радиолюбителей. Они могут еще найти полезное применение. Чем выше коэффициент передачи тока транзисторов И21э — тем чувствительнее оказывается весь электронный узел. Для большей чувствительности также можно соединить несколько фоторезисторов параллельно друг другу.

В литературе для радиолюбителей описано множество различных по сложности схем (включающих датчики в виде фото- и терморезисторов), со сложными усилительными каскадами и с применением микросхем, но на самом деле для большинства самодельных приборов в быту вполне подходят такие простые варианты, которые представлены на рис. 3.5 и 3.6.

Одним из основных элементов автоматики в уличном освещении, наряду с таймерами и датчиками движения, является фотореле или сумеречное реле. Назначение данного аппарата — автоматическое подключение полезной нагрузки, при наступлении темного времени суток, без участия человека. Это устройство также получило огромную популярность благодаря своей дешевизне, доступности и простоте подключения. В данной статье мы подробно разберем принцип работы сумеречного выключателя и нюансы его подключения, а также расскажем, как сделать фотореле своими руками. Это не отнимет много времени и сил, зато вам будет приятно пользоваться самостоятельно собранным устройством.

Конструкция реле

Основным элементом реле является фотодатчик, в схемах могут применяться фоторезисторы, диоды, транзисторы, фотоэлектрические элементы. При изменении освещенности на фотоэлементе соответственно изменяются и его свойства, такие как сопротивление, состояния P-N перехода в диодах и транзисторах, а также напряжения на контактах фоточувствительного элемента. Далее сигнал усиливается и происходит переключение силового элемента, коммутирующего нагрузку. В качестве выходных управляющих элементов используют реле или симисторы.

Почти все покупные элементы собраны по схожему принципу и имеют два входа и два выхода. На вход подается сетевое напряжение 220 Вольт, которое, в зависимости от установленных параметров, появляется и на выходе. Иногда фотореле имеет всего 3 провода. Тогда ноль – общий, на один провод подается фаза, и при нужной освещенности она соединяется с оставшимся проводом.

Читайте также:  Чем чистят диваны профессионалы

При подключении фотореле необходимо ознакомится с инструкцией, обратить особое внимание на максимальную мощность подключаемой нагрузки, тип ламп освещения (накаливания, газоразрядные, светодиодные лампочки). Важно знать, что реле освещения с тиристорным выходом не смогут работать с энергосберегающими лампами, а также с некоторыми видами диммеров из-за конструктивных особенностей. Этот нюанс необходимо учитывать, чтобы не повредить оборудование.

Давайте рассмотрим несколько схем для самостоятельной сборки сумеречного выключателя в домашних условиях. Для примера разберем, как сделать симисторный ночник с фотоэлементом.

Инструкция по сборке

Это самая элементарная схема фотореле из нескольких деталей: симистора Quadrac Q60, опорного резистора R1, и фото элемента ФСК:

При отсутствии света симисторный ключ открывается полностью и лампа в ночнике светит в полный накал. При увеличении освещенности в помещении происходит смещение напряжения на управляющем контакте и меняется яркость светильника, вплоть до полного затухания лампочки.

Обратите внимание, что в схеме присутствует опасное для жизни напряжение. Подключать и тестировать ее необходимо с особой аккуратностью. А готовое устройство обязательно должно быть в диэлектрическом корпусе.

Следующая схема с релейным выходом:

Транзистор VT1 усиливает сигнал с делителя напряжения, который состоит из фоторезистора PR1 и резистора R1. VT2 управляет электромагнитным реле К1, которое может иметь как нормально разомкнутые, так и нормально замкнутые контакты, в зависимости от назначения. Диод VD1 шунтирует импульсы напряжения во время отключения катушки, защищая транзисторы от выхода из строя из-за бросков обратного напряжения. Рассмотрев данную схему, можно обнаружить, что ее часть (выделенная красным) по функционалу близка к готовым сборкам релейного модуля для ардуино.

Слегка переделав схему и дополнив ее одним транзистором и солнечным фотоэлементом от старого калькулятора, был собран прототип сумеречного выключателя — самодельное фотореле на транзисторе. При освещении солнечного элемента PR1, транзистор VT1 открывается и подает сигнал на выходной релейный модуль, который переключает свои контакты, управляя полезной нагрузкой.

Если у вас остались вопросы, то посмотрите видео, на которых также подробно рассказывается, как сделать фотореле своими руками:

Вот, собственно и вся информация о сборке фотореле своими руками. Надеемся, предоставленные схемы и видео уроки помогли вам сделать сумеречный выключатель из подручных средств!

Наверняка вы не знаете:

Фоторезисторы – полупроводниковые резисторы, сопротивление которых изменяется под воздействием электромагнитного излучения оптического диапазона.

Читайте также:  На что влияет электронная сигарета

Светочувствительный элемент у таких приборов представляет собой прямоугольную или круглую таблетку спрессованную из полупроводникового материала, или тонкий слой полупроводника, нанесённого на стеклянную пластинку – подложку. Полупроводниковый слой с обеих сторон имеет выводы для подключения фоторезистора в схему. На принципиальных схемах фоторезистор обозначается знаком резистора в кружке с боковыми стрелками.
Электропроводность фоторезистора зависит от освещенности. Чем ярче освещение прибора, тем меньше сопротивление фоторезистора и больше ток цепи.
Данные приборы используются в схемах автоматического регулирования.

Фотодиоды являются разновидностью полупроводниковых диодов. Пока фотоэлемент не освежён, запирающий слой препятствует взаимному обмену электронов и дырок между слоями полупроводника. При облучении свет проникает в слой «р» и выбивает из него электроны. Освободившиеся электроны проходят в слой «n» и там нейтрализуют дырки. Между выводами фотодиода возникает разность потенциалов, которая может быть усилена электронной схемой для включения устройств автоматики и телемеханики.
Из фотодиодов собираются батареи питания в быту и на космических кораблях.

Фототранзисторы – фотоэлементы, основой которого служат транзисторы. В данном фотореле освещения применён фототранзистор прямой проводимости. Для поступления светового потока на полупроводниковый кристалл крышка транзистора удаляется простым снятием кусачками.

Фотореле на рисунке выше служит для автоматического отключения или включения исполнительных устройств при изменении освещения.

Резистор R1,R2 и фототранзистор VT1 представляют делитель напряжения на базе транзистора VT2. При освещении фототранзистора VT1 напряжение на базе транзистора VT2 понижается, транзистор VT2 закрывается, а VT3 открывается.

Реле К1 срабатывает от прохождения тока и размыкает контакты К 1-2, питание нагрузки прекращается. Диод VD2 защищает транзистор VT3 от импульсных помех, которые возникают при переключениях тока в обмотке реле К1.

Контакты реле могут использоваться для переключений исполнительных устройств автоматики и телемеханики.
Резистором R1 устанавливается порог чувствительности, а R4 порог освещённости.

Светодиод HL1 индицирует включение питания и режим срабатывания реле К1. Конденсатор С1 устраняет срабатывание реле при наличии помех. Питание схемы реле стабилизировано аналоговой микросхемой DA1. Конденсаторы С2,С3 входят в сглаживающий фильтр. Диодный мост VD1 выбран на ток до 1 ампера и напряжение 50-100 Вольт.
Устройство снабжено выключателем электросети S1 и предохранителем F1.
Конструкция фототранзистора VT1 простая: удаляется «шапка» транзистора кусачками, транзистор приклеивается к гайке М.8,а гайка с транзистором к кусочку стекла и крепится на прибор.

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
Adblock detector