No Image

Схема машины постоянного тока

0 просмотров
10 марта 2020

Устройство статора.

Машина постоянного тока состоит из двух основных частей: неподвижной – статора и вращающейся – ротора, называемого в машинах постоянного тока якорем. Эскиз машины постоянного тока показан на рис. 1.1, а общий вид с разрезом — на рис.

1.2. Статор состоит из станины 1, главных полюсов 2, дополнительных полюсов 3, подшипниковых щитов 4 и щеточной траверсы со щетками 6.

Станина имеет кольцевую форму и изготовляется из стального литья или стального листового проката. Она составляет основу всей машины и, кроме того, выполняет функцию магнитопровода.

Главные полюсы служат для создания постоянного во времени и неподвижного в пространстве магнитного поля. С этой целью по обмотке полюсов пропускается постоянный ток, называемый током возбуждения (в машинах малой мощности в качестве полюсов могут использоваться постоянные магниты).

Дополнительные полюсы устанавливаются между главными и служат для улучшения условий коммутации.

Подшипниковые щиты закрывают статор с торцов. В них впрессовываются подшипники и укрепляется щеточная траверса, которая с целью регулирования может поворачиваться. На щеточной траверсе закреплены пальцы, которые электрически изолированы от траверсы. На пальцах установлены щеткодержатели со щетками, изготовленными из графита или смеси графита с медью.

Устройство якоря.

Вращающаяся часть машин – якорь 9 (рис. 1.1, 1.2, а, б) состоит из сердечника 7, обмотки 8 и коллектора 5.

Сердечник имеет цилиндрическую форму. Он набирается из колец или сегментов листовой электротехнической стали, на внешней поверхности которых выштампованы пазы. В пазы сердечника укладываются секции из медного провода. Концы секций, которые выводятся на коллектор и припаиваются к его пластинам, образуют замкнутую обмотку якоря.

Коллектор (рис. 1.3) набран из медных пластин клинообразной формы, изолированных друг от друга, и корпуса 3миканитовыми прокладками 2, образующими в сборе цилиндр, который крепится на валу якоря.

Машины постоянного тока – обратимые. Они могут работать и как генератор и как двигатель. Конструктивно генераторы и двигатели постоянного тока устроены одинаково. На рис. 5.1 показан продольный разрез двигателя постоянного тока.

Рис. 5.1 -Общий вид двигателя постоянного тока:

1-коллектор, 2 – щеточный аппарат, 3 – якорь, 4 – главные полюса, 5 – катушка обмотки возбуждения, 6 – станина, 7 и 12 подшипниковые щиты, 8 – вентилятор, 9 – лобовые части обмотки статора, 10 – вал, 11-лапы

Машины постоянного тока состоит из двух основных частей: статора – неподвижной части и подвижной части – ротора. В машинах постоянного тока ротор называется якорем.

Основными конструктивными элементами машин постоянного тока (рис. 5.1) являются станина 6 с закрепленными на ней главными 4 и добавочными полюсами, вращающийся якорь 3 с обмоткой возбуждения 5 и коллектором 1 и щеточный аппарат 2. В машинах малой и средней мощностей станина одновременно служит и корпусом, к которому крепятся лапы 11 для установки машины, и частью магнитопровода. По ней замыкается магнитный поток. В большинстве машин станина выполнена массивной, из стальных труб, либо сварной из листов конструкционной стали. В ряде машин станину выполняют шихтованной.

К внутренней поверхности станины крепят главные и добавочные полюсы. Сердечники главных полюсов массивные либо набраны из листов стали толщиной 1 — 2 мм. Сердечники добавочных полюсов, как правило, массивные. На главных полюсах располагаются обмотки возбуждения; их МДС создают рабочий поток машины. Обмотки добавочных полюсов, расположенных по поперечным осям машины, служат для обеспечения нормальной коммутации. Магнитопровод якоря шихтуется из листов электротехнической стали. В машинах малой мощности сердечник якоря насаживается непосредственно на вал со шпонкой и фиксируется в осевом направлении буртиком вала и кольцевой шпонкой. С торцов якоря для предотвращения распушения листов во время работы установлены нажимные шайбы, совмещенные с обмоткодержателями.

На валу 10 двигателя расположен якорь двигателя. Сердечник якоря представляет собой цилиндрический магнитопровод 6, в пазах которого расположена обмотка якоря 7.

Якорь машины постоянного тока в настоящее время выполняется, как правило, барабанного типа. Он состоит из: сердечника якоря 4, набираемого из листовой электротехнической стали толщиной 0,35–0,5 мм. Для уменьшения потерь от вихревых токов листы изолируются друг от друга лаковой или оксидной пленкой. На наружной поверхности сердечника якоря имеются пазы, равномерно распределенные по окружности, в которые укладывается обмотка якоря 5. Обмотка выполняется из специальных медных обмоточных проводов круглого или прямоугольного сечения. Элементы обмотки тщательно изолируются между собой и от сердечника и закрепляются в пазах при помощи клиньев или бандажей из стальной проволоки. Части обмотки, выступающие с торцов сердечника (лобовые соединения) крепятся бандажами.

Секции обмотки якоря присоединены к коллектору 1. К нему же прижимаются пружинами неподвижные щетки 2. Закрепленный на валу двигателя коллектор состоит из ряда изолированных от него и друг от друга медных пластин. С помощью коллектора, и щеток осуществляется соединение обмотки якоря с внешней электрической цепью. У двигателей они, кроме того, служат для преобразования постоянного по направлению тока внешней цепи в изменяющийся по направлению ток в проводниках обмотки якоря.

Читайте также:  Как вешать люстру если потолок натяжной

Обмотки якорей двухслойные. В машинах мощностью до 15 — 20 кВт они выполнены из круглого провода и уложены в полузакрытые пазы. В пазовых частях обмотка крепится пазовыми клиньями, в лобовых – бандажами из стеклоленты или немагнитной стальной проволоки, которые прижимают их к обмоткодержателям. В машинах большой мощности катушки обмотки якоря наматывают из прямоугольного провода и укладывают в открытые пазы. Крепление обмотки либо такое же, как и в машинах малой мощности, т. е. клиньями в пазовой и бандажами в лобовой части, либо бандажами и в пазовой, и в лобовой части. Обмотка якоря присоединяется к коллектору, закрепленному на валу машины. Обычно коллектор выполняется цилиндрического типа, реже торцевого. Продольный разрез цилиндрического коллектора приведен на рис. 5.2.

1 – передний нажимной конус; 2 — пластины коллектора ; 3 — втулка коллектора; 4 — изоляционная манжета; 5 —задний нажимной конус

Коллектор состоит из коллекторных пластин (ламелей) 2, изолированных друг от друга и от элементов крепления миканитовыми прокладками и манжетами 4. С торцов пластины стягиваются нажимными конусами (фланцами) 5. Благодаря специальному выступу (ласточкину хвосту) пластины сжимаются между собой, образуя жесткую конструкцию. Затем коллектор обтачивается, чтобы его рабочая поверхность была строго цилиндрической.

Для соединения обмотки якоря с внешней цепью служит щеточный аппарат. Обычно он состоит из щеточной траверсы с пальцами и щеткодержателей со щетками. Щеткодержатель состоит из обоймы, в которой располагается щетка, и нажимной пружины, прижимающей щетку к коллектору. Все одноименные щетки соединяются между собой сборными шинами, которые выводятся на зажимы машины, как концы обмотки якоря. Обмотка якоря впаивается непосредственно в выступающие части коллекторных пластин или при помощи специальных соединительных проводников (петушков), если разница в диаметрах коллектора и якоря велика.

Дополнительные полюса с расположенной на них обмоткой уменьшают искрение между щетками и коллектором машины. Обмотку дополнительных полюсов соединяют последовательно с обмоткой якоря и на электрических схемах часто не изображают.

Кроме двигателей, имеющих два главных полюса, существуют машины постоянного тока с четырьмя и бόльшим количеством главных полюсов. При этом соответственно увеличивается количество дополнительных полюсов и комплектов щеток.

На корпусе также расположены табличка с паспортными данными и клеммная коробка.

Клеммы на щитке коробки маркируются: начало и конец обмотки якоря А1 и А2; параллельной обмотки возбуждения – Е1 и Е2 , обмотки дополнительных полюсов – В1 и В2 .

Электрические машины постоянного тока

Устройство электрической машины постоянного тока

Электрическая машина постоянного тока состоит из двух основных частей: неподвижной части ( индуктора) и вращающейся части ( якоря с барабанной обмоткой).
На рис. 1 изображена конструктивная схема машины постоянного тока

Индуктор состоит из станины 1 цилиндрической формы, изготовленной из ферромагнитного материала, и полюсов с обмоткой возбуждения 2, закрепленных на станине. Обмотка возбуждения создает основной магнитный поток.
Магнитный поток может создаваться постоянными магнитами, укрепленными на станине.
Якорь состоит из следующих элементов: сердечника 3, обмотки 4, уложенной в пазы сердечника, коллектора 5.
Рис. 1
Сердечник якоря для уменьшения потерь на вихревые точки набирается из изолированных друг от друга листов электротехнической стали.

Принцип действия машины постоянного тока

Рассмотрим работу машины постоянного тока в режиме генератора на модели рис.2,

где 1 – полюсы индуктора, 2 – якорь, 3 – проводники, 4 – контактные щетки.
Проводники якорной обмотки расположены на поверхности якоря. Внешние поверхности проводников очищены от изоляции, а на эти поверхности проводников наложены неподвижные контактные щетки.
Контактные щетки размещены на линии геометрической нейтрали, проведенной посредине между полюсами.
Приведем якорь машины во вращение в направлении, указанном стрелкой.
Рис. 2
Определим направление ЭДС, индуктированных в проводниках якорной обмотки по правилу правой руки.

На рис.2 крестиком обозначены ЭДС, направленные от нас, точками – ЭДС, направленные к нам. Соединим проводники между собой так, чтобы ЭДС в них складывались. Для этого соединяют последовательно конец проводника, расположенного в зоне одного полюса с концом проводника, расположенного в зоне полюса противоположной полярности (рис. 3)

Два проводника, соединенные последовательно, образуют один виток или одну катушку. ЭДС проводников, расположенных в зоне одного полюса, различны по величине. Наибольшая ЭДС индуктируется в проводнике, расположенном под срединой полюса, ЭДС, равная нулю, – в проводнике, расположенном на линии геометрической нейтрали.
Рис. 3
Если соединить все проводники обмотки по определенному правилу последовательно, то результирующая ЭДС якорной обмотки равна нулю, ток в обмотке отсутствует. Контактные щетки делят якорную обмотку на две параллельные ветви. В верхней параллельной ветви индуктируется ЭДС одного направления, в нижней параллельной ветви – противоположного направления. ЭДС, снимаемая контактными щетками, равна сумме электродвижущих сил проводников, расположенных между щетками.
На рис. 4 представлена схема замещения якорной обмотки.

Читайте также:  Клей сантехнический для резьбы

В параллельных ветвях действуют одинаковые ЭДС, направленные встречно друг другу. При подключении к якорной обмотке сопротивления в параллельных ветвях возникают одинаковые токи , через сопротивление RH протекает ток IЯ.
Рис. 4
ЭДС якорной обмотки пропорциональна частоте вращения якоря n2 и магнитному потоку индуктора Ф

(1)

где Се – константа.
В реальных электрических машинах постоянного тока используется специальное контактное устройство – коллектор. Коллектор устанавливается на одном валу с сердечником якоря и состоит из отдельных изолированных друг от друга и от вала якоря медных пластин. Каждая из пластин соединена с одним или несколькими проводниками якорной обмотки. На коллектор накладываются неподвижные контактные щетки. С помощью контактных щеток вращающаяся якорная обмотка соединяется с сетью постоянного тока или с нагрузкой.

3. Работа электрической машины постоянного тока
в режиме генератора

Любая электрическая машина обладает свойством обратимости, т.е. может работать в режиме генератора или двигателя. Если к зажимам приведенного во вращение якоря генератора присоединить сопротивление нагрузки, то под действием ЭДС якорной обмотки в цепи возникает ток

где U – напряжение на зажимах генератора;
Rя – сопротивление обмотки якоря.

(2)

Уравнение (2) называется основным уравнением генератора. С появлением тока в проводниках обмотки возникнут электромагнитные силы.
На рис. 5 схематично изображен генератор постоянного тока, показаны направления токов в проводниках якорной обмотки.

Воспользовавшись правилом левой руки, видим, что электромагнитные силы создают электромагнитный момент Мэм, препятствующий вращению якоря генератора.
Чтобы машина работала в качестве генератора, необходимо первичным двигателем вращать ее якорь, преодолевая тормозной электромагнитный момент, возникающий по правилу Ленца.

4. Генераторы с независимым возбуждением.
Характеристики генераторов

Магнитное поле генератора с независимым возбуждением создается током, подаваемым от постороннего источника энергии в обмотку возбуждения полюсов.
Схема генератора с независимым возбуждением показана на рис. 6.
Магнитное поле генераторов с независимым возбуждением может создаваться
от постоянных магнитов (рис. 7).

Зависимость ЭДС генератора от тока возбуждения называется характеристикой холостого хода E = Uхх = f (Iв).
Характеристику холостого хода получают при разомкнутой внешней цепи (Iя) и при постоянной частоте вращения (n2 = const)
Характеристика холостого хода генератора показана на рис. 8.
Из-за остаточного магнитного потока ЭДС генератора не равна нулю при токе возбуждения, равном нулю.
При увеличении тока возбуждения ЭДС генератора сначала возрастает пропорционально.
Соответствующая часть характеристики холостого хода будет прямолинейна. Но при дальнейшем увеличении тока возбуждения происходит магнитное насыщение машины, отчего кривая будет иметь изгиб. При последующем возрастании тока возбуждения ЭДС генератора почти не меняется. Если уменьшать ток возбуждения, кривая размагничивания не совпадает с кривой намагничивания из-за явления гистерезиса.
Зависимость напряжения на внешних зажимах машины от величины тока нагрузки
U = f (I) при токе возбуждения Iв = const называют внешней характеристикой генератора.

Внешняя характеристика генератора изображена на рис. 9.

С ростом тока нагрузки напряжение на зажимах генератора уменьшается из-за увеличения падения напряжения в якорной обмотке.

5. Генераторы с самовозбуждением.
Принцип самовозбуждения генератора
с параллельным возбуждением

Недостатком генератора с независимым возбуждением является необходимость иметь отдельный источник питания. Но при определенных условиях обмотку возбуждения можно питать током якоря генератора.
Самовозбуждающиеся генераторы имеют одну из трех схем: с параллельным, последовательным и смешанным возбуждением. На рис. 10 изображен генератор с параллельным возбуждением.

Обмотка возбуждения подключена параллельно якорной обмотке. В цепь возбуждения включен реостат Rв. Генератор работает в режиме холостого хода.
Чтобы генератор самовозбудился, необходимо выполнение определенных условий.
Первым из этих условий является наличие остаточного магнитного потока между полюсами. При вращении якоря остаточный магнитный поток индуцирует в якорной обмотке небольшую остаточную ЭДС.
Рис. 10
Вторым условием является согласное включение обмотки возбуждения. Обмотки возбуждения и якоря должны быть соединены таким образом, чтобы ЭДС якоря создавала ток, усиливающий остаточный магнитный поток. Усиление магнитного потока приведет к увеличению ЭДС. Машина самовозбуждается и начинает устойчиво работать с каким-то током возбуждения Iв = const и ЭДС Е = const, зависящими от сопротивления Rв в цепи возбуждения.
Третьим условием является то, что сопротивление цепи возбуждения при данной частоте вращения должно быть меньше критического. Изобразим на рис. 11 характеристику холостого хода генератора E = f (Iв) (кривая 1) и вольт – амперную характеристику сопротивления цепи возбуждения Uв = Rв·Iв, где Uв – падение напряжения в цепи возбуждения. Эта характеристика представляет собой прямую линию 2, наклоненную к оси абсцисс под углом γ (tg γ

Читайте также:  Как правильно носить шарф палантин

Ток обмотки возбуждения увеличивает магнитный поток полюсов при согласном включении обмотки возбуждения. ЭДС, индуцированная в якоре, возрастает, что приводит к дальнейшему увеличению тока обмотки возбуждения, магнитного потока и ЭДС. Рост ЭДС от тока возбуждения замедляется при насыщении магнитной цепи машины.
Рис. 11

Падение напряжения в цепи возбуждения пропорционально росту тока. В точке пересечения характеристики холостого хода машины 1 с прямой 2 процесс самовозбуждения заканчивается. Машина работает в устойчивом режиме.
Если увеличим сопротивление цепи обмотки возбуждения, угол наклона прямой 2 к оси тока возрастает. Точка пересечения прямой с характеристикой холостого хода смещается к началу координат. При некотором значении сопротивления цепи возбуждения Rкр, когда
γ = γкр, самовозбуждение становится невозможным. При критическом сопротивлении вольт – амперная характеристика цепи возбуждения становится касательной к прямолинейной части характеристики холостого хода, а в якоре появляется небольшая ЭДС.

6. Работа электрической машины постоянного тока
в режиме двигателя. Основные уравнения

Под действием напряжения, подведенного к якорю двигателя, в обмотке якоря появится ток Iя. При взаимодействии тока с магнитным полем индуктора возникает электромагнитный вращающий момент

где CM – коэффициент, зависящий от конструкции двигателя.
На рис. 12 изображен схематично двигатель постоянного тока, выделен проводник якорной обмотки.

Ток в проводнике направлен от нас. Направление электромагнитного вращающего момента определится по правилу левой руки. Якорь вращается против часовой стрелки. В проводниках якорной обмотки индуцируется ЭДС, направление которой определяется правилом правой руки. Эта ЭДС направлена встречно току якоря, ее называют противо-ЭДС.
Рис. 12

В установившемся режиме электромагнитный вращающий момент Мэм уравновешивается противодействующим тормозным моментом М2 механизма, приводимого во вращение.

На рис. 13 показана схема замещения якорной обмотки двигателя. ЭДС направлена встречно току якоря. В соответствии со вторым законом Кирхгофа , откуда

. (3)

Рис.13 Уравнение (3) называется основным уравнением двигателя.

Из уравнения (3) можно получить формулы:

(4)
(5)

Магнитный поток Ф зависит от тока возбуждения Iв, создаваемого в обмотке возбуждения. Из формулы (5) видно, что частоту вращения двигателя постоянного тока n2 можно регулировать следующими способами:

  1. изменением тока возбуждения с помощью реостата в цепи обмотки возбуждения;
  2. изменением тока якоря с помощью реостата в цепи обмотки якоря;
  3. изменением напряжения U на зажимах якорной обмотки.

Чтобы изменить направление вращения двигателя на обратное (реверсировать двигатель), необходимо изменить направление тока в обмотке якоря или индуктора.

7. Механические характеристики электродвигателей
постоянного тока

Рассмотрим двигатель с параллельным возбуждением в установившемся режиме работы (рис. 14). Обмотка возбуждения подключена параллельно якорной обмотке.

, откуда

(6)

Механической характеристикой двигателя называется зависимость частоты вращения якоря n2 от момента на валу M2 при U = const и Iв = const.
Уравнение (6) является уравнением механической характеристики двигателя с параллельным возбуждением.
Рис. 14

Эта характеристика является жесткой. С увеличением нагрузки частота вращения такого двигателя уменьшается в небольшой степени (рис. 15).

На рисунке 16 изображен двигатель последовательного возбуждения. Якорная обмотка и обмотка возбуждения включены последовательно.

Рис. 15 Рис. 16

Ток возбуждения двигателя одновременно является током якоря. Магнитный поток индуктора пропорционален току якоря.

где k – коэффициент пропорциональности.
Момент на валу двигателя пропорционален квадрату тока якоря.

Механическая характеристика двигателя последовательного возбуждения является мягкой (рис. 17).

Рис. 17 Уравнение механической характеристики двигателя последовательного возбуждения выглядит следующим образом:

С увеличением нагрузки скорость двигателя резко падает.
С уменьшением нагрузки на валу двигатель развивает очень большую частоту вращения. Говорят, что двигатель идет вразнос. Работа двигателя последовательного возбуждения без нагрузки недопустима.
Двигатель смешанного возбуждения имеет механическую характеристику, представляющую собой нечто среднее между механическими характеристиками двигателя параллельного и последовательного возбуждения.
Двигатели с параллельным возбуждением применяются для привода станков и различных механизмов, требующих широкой, но жесткой регулировки скорости.
Двигатели с последовательным возбуждением применяются в качестве тяговых двигателей электровозов, трамваев и т.д., когда жесткость, то есть рывки момента недопустимы.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10238 – | 7597 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
Adblock detector