No Image

Термометр на термопаре своими руками

СОДЕРЖАНИЕ
0 просмотров
10 марта 2020

Теги статьи: Добавить тег

Миниатюрный термометр с термопарой

Автор: nikoradist, chem_kot
Опубликовано 13.11.2012
Создано при помощи КотоРед.

Термометр: меньше – бывает!

Устройство применяется для контроля температуры глицерина при лужении печатных плат в домашних условиях.

Технические характеристики

Диапазон измеряемых температур

ЭДС хромель – алюмелевой термопары усиливается операционным усилителем и поступает на вход АЦП микроконтроллера, который вычисляет температуру и с помощью динамической индикации выводит показания на светодиодный семисегментный индикатор с общим анодом. Опорное напряжение АЦП – напряжение питания микроконтроллера, стабилизированные 3 В. В устройстве применен 8-разрядный микроконтроллер от ST Microelectronics – STM8S105K4U6 в корпусе VFQFPN-32 (5х5 мм). Примечательная особенность МК – цена, составляющая 22руб в розницу. Вообще говоря, низкими ценами отличается все семейство контроллеров STM8, так же есть недорогое (300руб) средство внутрисхемной отладки – ознакомительная плата STM8S DISCOVERY.

Монтаж достаточно плотный, так как хотелось добиться миниатюрных габаритов: все резисторы и керамические конденсаторы типоразмера 0603, танталовый кондексатор типа А, операционный усилитель LM358N в SOIC8, стабилизатор LP2980AIM5-3.0 в SOT23-5. Микроконтроллер установлен горячим воздухом на предварительно подготовленные контактные площадки. Шнур термопары приклеен к плате эпоксидным клеем. В дальнейшем устройство было обтянуто прозрачной термоусадкой. Специального разъема для прошивки не предусмотрено, припаиваем проводочки от STM8S DISCOVERY к контактам платы: RESET и SWIM, Vcc и GND. С установками фузов еще проще – у STM8 нет фьюзов , все конфигурируется "на лету"!

Калибровка: для примененной термопары был снят график зависимости термоЭДС от температуры – линейная функция.

Далее, следует измерить два значения ЭДС термопары после операционного усилителя (перед АЦП микроконтроллера) при разных известных температурах, например, при комнатной и при температуре кипения воды. Как вариант – можно измерить температуру кипения воды и температуру кипения глицерина 290 0 С (предварительно убедившись, что из него испарилась вода).

Затем измеренные значения необходимо подставить в формулу – найти наклон и смещение :

, где

Kу = 105,7 при номиналах, указанных на схеме;

U1, U2 – ЭДС термопары в Вольтах при соответственно t1 и t2;

t1,t2 – температуры в 0 С.

После этого требуется исправить в программе две строчки и перекомпилировать:

res = (unsigned int)temp+51;,

где вместо 1.36 подставляют значение K, а вместо 51 – округленное значение смещения.

Лужение печатной платы в глицерине – тема отдельной статьи.

В статье рассматривается простая схема цифрового термометра с модулем индикации, реализованном на микросхеме ТМ1637 и модулем преобразователя сигнала термопары в цифровой сигнал с использованием микросхемы МАХ6675. Внешний вид модулей на фото ниже.

Схема цифрового амперметра представлена на рисунке 1.

Основой схемы является микроконтроллер PIC16F628A с залитой в него программой. Благодаря китайским партнерам схема, как можно заметить получилась весьма и весьма простой. Каждую секунду микроконтроллер считывает цифровой код реальной температуры по последовательному протоколу SPI. Программа считывания данных с микросхемы МАХ6675 микроконтроллером PIC на Ассемблере представлена в статье «Программа взаимодействия MAX6675 с микроконтроллером PIC».

MAX6675 Datasheet PDF

Далее из шестнадцати принятых бит программа выделяет нужные десять, преобразует числовое значение температуры в двоичном коде в двоично-десятичный код. Затем через табличные данные идет преобразование в семисегментный код, который передается в модуль индикации ТМ1637. Программа взаимодействия PIC контроллера с микросхемой ТМ1637 была рассмотрена в ранее опубликованной статье «Модуль TM1637 с PIC контроллером».

TM1637 Datasheet PDF

Вся схема питается стабилизированным микросхемой DA1 напряжением пять вольт. Трехвыводные однокристальные стабилизаторы с фиксированным напряжением пять бывают с разным максимальным входным напряжением, так что обратите на это внимание. Ток потребления термометра находится в пределах 15 миллиампер. Это вместе с током потребления индицирующего светодиода в модуле индикации ТМ1637. Этот светодиод находится на обратной стороне платы относительно индикатора. Для экономии энергии его можно исключить из схемы. При таком токе нагрузки в качестве микросхемы стабилизатора напряжения подойдет практически трехвыводной стабилизатор. Возможно, например, применение микросхемы LM78L05 в корпусе ТО-92. Ток нагрузки микросхемы – 100мА, а входное напряжение – 35 вольт.

LM78L05 Datasheet PDF

В случае применения радиоэлементов в корпусах SMD в качестве DA1можно применить стабилизатор из серии AMS1117. Максимальное входное напряжение этого стабилизатора ограничено величиной восемнадцать вольт.

AMS1117 Datasheet PDF

Все микросхемы устройства работают в импульсном режиме и паразитные пульсации питающего напряжения неизбежны, поэтому в целях улучшения фильтрации питающего напряжения и стабильности работы схемы, а также ее безотказной работы, в качестве конденсатора С1 стоит применить танталовый конденсатор. А конденсатор С2 при монтаже разместить непосредственно между выводами питания микроконтроллера.

Не думаю, что данная термопара рассчитана на измерение температуры +1023˚С (b’11 1111 1111’), хотя исходя из данных в документации, микросхема МАХ6675 имеет десяти разрядный АЦП. Я разогревал термопару газовой горелкой до +600˚С. Температура кипящей воды, измеренная данным термометром, составляла +102˚С. Я, думаю, для выпечки пирогов такой точности температуры вполне достаточно.

Успехов и удачи. К.В.Ю.

На замену не совсем удобным аналоговым измерителям температуры, в основе работы которых лежит свойство жидкости расширяться и сжиматься, промышленность предложила дискретные устройства. Эти совсем несложные приборы обладают рядом неоспоримых преимуществ. Купить измеритель можно практически в любом магазине бытовой или климатической техники, но гораздо интереснее изготовить электронный термометр с выносным датчиком своими руками.

Суть устройства

Термометр, разговорный аналог — градусник, предназначен для измерения температуры окружающей среды. Первое устройство было изобретено в 1714 году немецким физиком Д. Г. Фаренгейтом. В основе своей конструкции он использовал прозрачную запаянную колбу, внутри которой находился спирт. После в качестве жидкости учёный применил ртуть. Но шкала аналогового измерителя, существующая и по сей день, была разработана лишь только через 30 лет шведским астрономом и метеорологом Андерс Цельсием. За начальные точки он предложил взять температуру тающего льда и кипения воды.

Интересным фактом является то, что изначально числом 100 была отмечена температура таяния льда, а за ноль взята точка кипения. Впоследствии шкалу «перевернули». По некоторым мнениям это сделал сам Цельсий, по другим — его соотечественники ботаник Линней и астроном Штремер.

Вскоре изготовление ртутных измерителей было широко налажено производством в промышленных масштабах. Со временем ртуть из-за своей ядовитости была заменена на спирт, а затем и вовсе был предложен новый тип устройства — цифровой. Сегодня, пожалуй, градусник стал неотъемлемым атрибутом любого жилища. По совету Всемирной организации здравоохранения была принята Минаматская конвенция, направленная на постепенный вывод из обихода ртутных градусников. Согласно ей в 2022 году использование ртути в измерителях будет полностью прекращено.

Поэтому из-за своих отличных характеристик термометр с цифровой схемой практически не имеет конкурентов. Предлагаемые в продаже спиртовые приборы проигрывают ему по точности и удобству восприятия данных.

Электронные модели могут располагаться в любом месте, ведь в контролируемом помещении необходимо расположить только небольшой датчик, подключённый к устройству. Этот тип используется во многих технологических процессах промышленности, например, строительных, аграрных, энергетических. С их помощью контролируется:

  • температура воздуха в производственных и жилых зданиях;
  • проверка нагрева сыпучих продуктов;
  • состояние вязких материалов.

Принцип работы

Перед тем как непосредственно приступить к изготовлению электронного термометра, следует разобраться в принципе его действия и определиться, из каких узлов будет состоять конструкция. Промышленно выпускаемые электронные градусники различаются по своим размерам и назначению. Но все они построены на однотипном принципе действия.

Проводимость материала изменяется в зависимости от температуры окружающей среды. Основываясь на этом и проектируется схема электронного градусника. Так, чаще всего в конструкции применяется термопара. Это электронный прибор, стоящий из двух сваренных между собой металлов. На поверхности каждого из них имеется контактная площадка, подключённая к измерительной схеме. При нагревании или охлаждении контактов возникает термоэлектродвижущая сила, появление и изменение которой регистрируется платой электроники.

В устройствах нового поколения вместо термочувствительного элемента используется кремниевый диод. Полупроводниковый радиоэлемент, у которого наблюдается зависимость вольт-амперной характеристики от температурного воздействия. Иными словами, при прямом включении (направление тока от анода к катоду) значение падения напряжения на переходе изменяется в зависимости от нагрева полупроводника.

Обработанные данные выводятся на дисплей, с которого уже визуально снимаются пользователем. Цифровые градусники позволяют измерять изменения температуры в диапазоне от -50 ° С до 100 ° С.

Всего же в конструкции простого термометра можно выделить пять блоков:

  1. Датчик — устройство, изменяющее свои параметры в зависимости от величины воздействующей на него температуры.
  2. Измерительные провода — используются для выноса датчика и его расположения в различных местах, требующих контроля над температурой. Чаще всего это небольшого сечения в диаметре проводники, даже необязательно экранированные.
  3. Плата электроники — содержит блок анализатора, фиксирующий изменения приходящего от датчика сигнала, а затем передающий его на экран.
  4. Дисплей — монохромный или цветной экран, предназначенный для отображения данных об измеренной температуре.
  5. Блок питания — собирается на типовых для радиоэлектроники интегральных микросхемах. Используется для стабилизации и преобразования питания, подающегося на все узлы платы.

Особенности изготовления

Человеку, увлекающемуся радиолюбительством, сделать электронный термометр своими руками по схеме не доставит трудностей, но в то же время обычному потребителю понадобится иметь хотя бы навыки паяния. Сегодня существует довольно много различных схем, отличающихся как сложностью повторения, так и дефицитностью радиодеталей.

При выборе схемы учитывают характеристики, которые она сможет обеспечить будущему измерительному устройству. В первую очередь — это диапазон измеряемых температур, а во вторую – погрешность. Конструктивно можно собрать проводную и беспроводную модель. При сборке второго типа используется радиомодуль, значительно удорожающий изделие.

Из-за использования чувствительных специализированных микросхем собирать навесным монтажом схему вряд ли получится. Поэтому предварительно изготавливается печатная плата. Делать её лучше из одностороннего фольгированного стеклотекстолита методом «лазерно-утюжной технологии».

Суть метода заключается в том, что с помощью, например, Sprint Layout, рисуется печатная схема устройства и распечатывается в зеркальном отображении в масштабе 1:1 на лазерном принтере. Затем, приложив отпечатанный рисунок изображением вниз к фольгированному слою, проглаживают чертёж разогретым утюгом. Из-за особенностей тонера изображение линий перенесётся на стеклотекстолит. Далее плата погружается в ванную с реактивом, например, FeCl3.

В качестве индикатора можно использовать светодиодную матрицу, но лучше приобрести любой монохромный экран. Простой экран можно взять буквально за «копейки», например, подойдёт от старых системных блоков, выполненных в форм-факторе АТ. Если планируется конструкция с выносным датчиком, то неплохим вариантом будет использование шлейфа с диаметром проводника от 0,3 мм2, но в принципе подойдёт любой провод. При этом чем вынос датчика больше, тем большего сечения нужен и провод.

В схемотехнике некоторых термометров используются микроконтроллеры. Их применение позволяет упростить электрическую схему и повысить функциональность, но при этом требует навыков программирования и умения загружать прошивку. Для этого понадобится программатор, который можно также спаять самостоятельно, например, для LPT из пяти проводов.

Простой термометр

Конструкция простого термометра состоит всего из трёх деталей и тестера. В качестве датчика температуры в схеме используется LM35. Это интегральный прибор с калиброванным выходом по напряжению. Амплитуда на выходе датчика пропорциональна температуре. Точность измерений составляет 0,75° C. Запитывать интегральную микросхему можно как от однополярного источника, так и двухполярного. Предел измерений от -55 ° до 150° C.

В качестве мультиметра можно использовать стрелочный или цифровой прибор. К датчику согласно схеме подключают источник питания. Например, КРОНу или три соединённых последовательно пальчиковых батарейки. Измеритель же подключают к клеммам V и COM и переводят в режим измерения температуры. Потребление датчика при работе не превышает 10 мкА.

Диапазон измерения мультиметра устанавливается на два вольта. Отображённый на экране результат и будет соответствовать измеряемой температуре. Последняя цифра в числе обозначает десятые доли градуса.

При желании устройство можно сделать двухканальным. Для этого дополнительно необходимо будет изготовить механический или электронный переключатель.

Цифровая схема

Одна из самых простых схем состоит всего из нескольких элементов. В основе конструкции лежит использование датчика, выдающего значение температуры в цифровом коде. Стоимость термодатчика LM 335 не превышает 50 центов, при этом после калибровки его точность измерения составляет от 0,3 ° до 1,5° C. Датчик может измерять температуру от — 40 ° до 100° C. Выпускается он в двух корпусах — TO-92 и SOIC. В качестве аналога можно использовать отечественную микросхему К1019ЕМ1.

При монтаже длина соединительных проводов может достигать пяти метров. Калибровка схемы осуществляется изменением напряжения, подаваемым на вывод один. Необходимое значение рассчитывается по формуле:

Uвых = Vвых1 * T / To, где:

  • Uвых – напряжение на выходе микросхемы;
  • Uвых1 – напряжение на выходе при эталонной температуре;
  • T и To – измеряемая и эталонная температура.

Напряжение, формирующее выходной сигнал, зависит от температуры, поэтому питание, подающееся на датчик, должно осуществляться от источника тока. Собирается он на двух транзисторах КТ209 и не требует дополнительных настроек. Максимальный ток питания не превышает 5 мА. Увеличение выходного напряжения на 10 мВ соответствует приросту температуры на один градус.

Использование микроконтроллера

Применение в схеме самодельного термометра микроконтроллера подразумевает использование программы, управляющей его работой. В качестве микросхемы применяется ATmega8, а датчика температуры — DS18B20.

В схеме используется небольшое число радиодеталей. Она несложная и не нуждается после сборки в какой-либо наладке. Напряжение питания микроконтроллера составляет пять вольт. Для его стабилизации используется микросхема L7805. Транзисторы можно использовать любые с NPN структурой. В качестве индикатора подойдёт трёхразрядный сегментный дисплей с общим катодом.

Температура устройством может изменяться в интервале от -55 ° до 125º С с шагом в 0,1º С. Погрешность измерения не превышает 0,5º С. Обмен данными между датчиком и микроконтроллером происходит по шине 1-Wire. При большом расстоянии выноса измерительной микросхемы DS18B20 от ATmega8 необходимо подобрать подтягивающее сопротивление. Распаять его лучше непосредственно на вывод датчика.

При программировании все установки микроконтроллера оставляются заводскими, и фьюзы не изменяются. Затем к собранному термометру можно добавить ещё один датчик, а также часы. Но для этого необходимо будет обладать знаниями в программировании, чтобы дописать программный код.

Точный термометр

Применение в качестве датчиков полупроводниковых диодов и транзисторов характеризуется сложностью калибровки показаний, что в итоге приводит к погрешности результата измерений. Поэтому для получения точного результата в качестве измерителя применяется бифилярно намотанная катушка из тонкого проводника, размещённая в цилиндре, имеющем размеры порядка 4×20 мм.

Основой конструкции является микросхема ICL707 и светящийся индикатор. Питание можно подавать от любого источника с выходной амплитудой 12 В. На DA3 собран нормирующий преобразователь, изменяющий своё выходное напряжение в зависимости от сигнала, поступаемого с датчика.

Настройка заключается в выставлении на 36 ноге микросхемы напряжения, равного одному вольту. Делается это с помощью резисторов R3 и R4. Вместо датчика подключают резистор на 100 Ом. Изменением сопротивления R14 устанавливают нули на цифровом индикаторе. После чего устройство готово к измерениям.

Читайте также:  Полипропиленовые трубы диаметры внутренний и наружный
Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
Adblock detector