No Image

Термос устройство и принцип действия

СОДЕРЖАНИЕ
0 просмотров
10 марта 2020

В этой статье мы познакомимся с принципом работы термосов, видами и недостатками, а так же ответим на главный вопрос, как устроен термос. Термос является незаменимой вещью любого путешественника, туриста, дальнобойщика.

Термос необходим для сохранения (поддержания) высокой или низкой температуры продуктов питания. Термос — это очень удобная вещь, которая обязательно пригодится в походе, в дороге, да и в обычных бытовых делах. В роли продуктов питания могут быть не только напитки, но и первые, и вторые блюда; настои трав; лёд, мороженое и многие другие продукты.

Что бы термосу удалось сохранить продукт тёплым ему нужно как можно меньше передавать тепла с тёплого продукта в окружающую среду. А если сохранить холод, то наоборот — меньше передать тепла с окружающей среды в холодный продукт, т.е. термос. Это и есть основная задача термоса. Кстати, когда пищевой термос запачкается жировыми отложениями, то лучшее средство от грязи — это пищевая сода.

Принцип работы термоса

Теперь, когда Вы знаете, для чего предназначен термос, то можно познакомиться с его работой. Здесь нужно немного вспомнить свои знания по физике, а именно теплообмен веществ. Так как термосу необходимо сохранить тепло внутри себя, то его нужно изолировать от внешней среды, которая заставляет его остывать. Самый простой изолятор веществ — это воздух, но стоит знать, что он не идеален. Поэтому во многих термосах применяют вакуум, т.е. пространство, где нет никаких веществ, следовательно, и передавать тепло от колбы в окружающую среду будет нечем. Кстати, чтобы вода в термосе была чище, пользуйтесь кувшинными фильтрами.

Принцип работы термоса схож с сосудом Дьюара, который представляет собой сосуд из двойных стенок. Между стенками как раз и живёт вакуум или воздух. Сам сосуд сделан либо из стекла, либо из нержавеющей стали. Внутренняя часть колбы покрыта отражающим материалом, который отражает тепло внутри термоса. Внешняя часть термоса изготавливается либо из металла (больше механической прочности), либо из пластика.

Виды термоса

Термосы для напитков — имеют узкую горловину диаметром 25–55 мм. Кстати, в этот термос можно заливать даже кофе.

Термосы для напитков с пневмонасосом — обычный термос, в котором имеется насос для извлечения жидкостей путём нажатия на кнопку, и выводное отверстие сбоку для наливания напитков.

Пищевые термосы для еды — имеют широкую горловину, диаметр которой практически равен диаметру корпуса (от 65–80 мм). Удобен в хранении, как первых, так и вторых блюд, а также мороженного, каш и т.п.

Универсальные термосы — это такой же пищевой термос, но с более узким отверстием для наливания напитков.

Недостатки термоса

Если термос так умно устроен, то почему же он через несколько часов или дней всё равно остывает? А всё потому что у любого термоса есть небольшие потери и вот почему:

  1. Крышка. Как бы плотно она не была прижата, всё равно хоть чуть-чуть, но пропустит. Крышка не герметична на 100%
  2. Вакуум, даже если откачаем воздух, то абсолютный вакуум создать нельзя.
  3. Зеркальная поверхность (отражатель), находящаяся внутри сосуда термоса. Какой бы зеркальной она не была, все 100% тепла она не отразит. Максимум – это 90%.

Те́рмос — вид бытовой теплоизоляционной посуды для продолжительного сохранения более высокой или низкой температуры продуктов питания, по сравнению с температурой окружающей среды. Является разновидностью сосуда Дьюара.

Термос может использоваться не только для хранения готовых напитков и еды, но и для их приготовления, например — различных настоев и каш.

Содержание

История [ править | править код ]

Берлинский производитель стеклянных изделий Рейнгольд Бургер [de] усовершенствовал сосуд Дьюара, изобретённый в 1892 году шотландским физиком и химиком Джеймсом Дьюаром. Для удобного использования этого сосуда в быту (хранения напитков), он добавил к нему металлический корпус, пробку и крышку-стаканчик. Также, им была разработана система поддержки внутренней стенки колбы, так как она держалась только в одном месте у горловины сосуда и из-за этого легко ломалась при активном использовании — на это изобретение Рейнгольд Бургер получил немецкий патент DE170057, заявка на который была подана 30 сентября 1903 года [1] [2] .

Читайте также:  Дырка для вытяжки на кухне

Был объявлен конкурс на лучшее название торговой марки для нового изобретения, в котором победил один из жителей Мюнхена, предложивший название Тhermos (от греч. therme — горячий). Бургер основал одноимённую фирму Тhermos-Gesellschaft m.b.H. (Тhermos GmbH) по выпуску термосов, и с марта 1904 года эта торговая марка стала использоваться в коммерческих целях.

Сосуды Дьюара не были запатентованы, их изобретатель — Джеймс Дьюар — считал, что они не будут иметь коммерческого успеха, поэтому, когда он обратился в суд о возмещении нанесённого Бургером ущерба, его иск остался неудовлетворённым [3] .

23 октября 1906 года Рейнгольд Бургер подал заявку, а 3 декабря 1907 года получил патент США U.S. Patent 872 795 на «Сосуд с двойными стенками и вакуумом между ними». В качестве изобретателя термоса в патенте был указан Рейнгольд Бургер, имя Джеймса Дьюара в патенте не упоминается. Правопреемником данного патента становится американская фирма American Thermos Bottle Company. Также в 1907 году права на производство термоса были проданы ещё двум компаниям — канадской Canadian Thermos Bottle Co и британской Thermos Limited [4] .

В настоящее время срок патента истёк. Права на использование торговой марки Thermos принадлежат японской компании Тhermos L.L.C., выпускающей термосы под этим брендом [5] .

Конструкция [ править | править код ]

Основной элемент термоса — колба (сосуд Дьюара) из стекла или нержавеющей стали с двойными стенками, между которыми выкачан воздух (создан вакуум) для уменьшения теплопроводности и конвекции между колбой термоса и внешней средой. Для уменьшения теплового излучения внутренние поверхности стеклянной колбы покрывают слоем из отражающего, зеркального материала. Наружный корпус термосов со стеклянной колбой изготавливается из пластмассы или металла, колба из металла одновременно является корпусом термоса.

Разновидности [ править | править код ]

По материалу, из которого сделана внутренняя колба: пластиковые, стеклянные и металлические. Стеклянная колба хорошо держит температуру, при неаккуратном обращении может разбиться, подходит для домашнего использования.

Металлическая колба подходит для туристов.

В зависимости от типа используемой пищи, современные бытовые термосы можно разделить на следующие виды:

  • Термосы для напитков — имеют узкую горловинудиаметром 25—55 мм.
  • Термосы с пневмонасосом — в конструкции крышки такого термоса есть пневмонасос для извлечения жидкостей путём нажатия на кнопку, и выводное отверстие сбоку для наливания. Предназначены для настольного использования.
  • Пищевые термосы — имеют широкую горловину, диаметр которой практически равен диаметру корпуса (от 65—80 мм). Предназначены для хранения первых и вторых блюд, мороженого и других видов пищевых продуктов.
  • Универсальные термосы — отличаются от пищевых термосов только конструкцией пробки, которая имеет дополнительное, более узкое, отверстие для наливания напитков.
  • Пищевые термосы с судками — термосы, в которые стопкой, друг на друга, вкладывается 2—3 пластиковые или металлические ёмкости (контейнеры), позволяющие одновременно раздельно хранить различные виды блюд — например для обеда: холодную закуску с первым и вторым блюдом.
  • Термочашка или Термокружка

    Термос для напитков с колбой из нержавеющей стали

    Термос – вид посуды, который люди используют по сей день с целью поддержания высокой температуры продуктов питания. Термос является незаменимой частью в походах, когда нужно сохранить напиток горячим на протяжении долгого времени.

    Термосу нужно как можно меньше отдавать тепло в окружающую среду для того, чтобы сохранить в нём постоянную температуру.

    Современную концепцию термосов предложил А.Ф. Вейнхольц в 1881 году. Он разработал контейнер из стекла со сдвоенными стенками, внутри которых был полностью откачан воздух (Ящик Вейнхольда). При этом объем сосуда, в плане температуры, практически перестал зависеть от температуры внешних стенок.

    Спустя 11 лет в 1892 году физик и химик из Шотландии Д. Дьюар улучшил изобретение своего немецкого коллеги. Форма контейнера сменилась на колбу с узким верхним проёмом и парой стенок; это предотвращало быстрое испарение полученных газов. Для лучшей изоляции сосуд изнутри был покрыт тонким серебряным слоем.

    Читайте также:  Красивые деревца стволы которых

    Кроме того, от внутренней поверхности, напоминающей зеркало, хорошо отражалось тепловое излучение. Изделие подвешивалось при помощи пружин в специальном кожухе из металла. С помощью своего изобретения Дьюар получил и даже смог в течение определённого времени сохранить водород в жидком и твёрдом состоянии. Однако ни он, ни Вейнхольд не стали патентовать уникальный контейнер: они не считали, что их изобретения смогут принести кому-либо ощутимую прибыль.

    В 1903 году Р. Бургеру, немецкому производителю стекла, пришла в голову мысль усовершенствовать сосуд Дьюара, чтобы использовать его не только в научных целях, но и в бытовых. Колбу поместили в металлический корпус, для большей герметичности добавили пробку, закрывающую сосуд. Конструкцию дополнили удобной крышкой, которой отводилась роль небольшого стакана. Новшеством стала внутренняя система, при помощи которой колба поддерживалась изнутри. До этого момента колба закреплялась лишь у горлышка всей конструкции, из-за чего являлась достаточно хрупким изделием.

    Осенью 1903 года Р. Бургер запатентовал своё изобретение и основал фирму по производству нового изделия – «вакуумной фляжки». С 1904 года в коммерческих целях он стал использовать новую торговую марку Thermos (в переводе с греческого «горячий»). С 1908 года термос стали массово выпускать в Америке, Канаде и Англии, откуда новые герметичные контейнеры для хранения жидкостей и поддержания их постоянной температуры стали постепенно распространяться по всему миру. [2]

    Виды термосов. Преимущества и недостатки

    Термос со стальной колбой изготавливают из прочной нержавеющей стали.

    Термос из стали удобен в производстве, ремонтопригодности и обладает высокими эксплуатационными качествами. Однако он не лишен недостатков. Термос, изготовленный из металла, характеризует высокая теплопроводность, так как он быстро меняет температуру – быстрее нагревается и быстрее остывает.

    Также необходима дополнительная обработка термоса кипятком перед непосредственным использованием, иначе колба заберет часть энергии, и тем самым напиток будет холоднее. Поскольку высококачественная нержавеющая сталь намного дороже стекла, термосы со стальной колбой стоят дороже термосов со стеклянной колбой.

    Корпус термоса со стеклянной колбой в основном изготавливают из металлопластмассы, жестяной пластины или пластика. Его преимуществами являются низкая теплопроводность, гигиеничность и вес. Термос со стеклянной колбой отличается меньшей массой по сравнению с термосом со стальной колбой.

    Стоит учесть, что стекло хорошо проводит тепло и не вступает во взаимодействие с другими веществами, именно поэтому после использования термос со стеклянной колбой не перенимает ни от чего запахи. Но и термос со стеклянной колбой имеет свои недостатки. Стекло – хрупкий материал, поэтому оно подвержено спонтанному разрушению. Не стоит забывать о свойствах стекла: в термос со стеклянной колбой нельзя заливать кипяток, если его принесли с холода, иначе стекло может лопнуть. [6,9]

    Устройство термоса и принцип работы

    Работа термоса основана на сохранении тепла внутри себя, поэтому его нужно изолировать от внешней среды, которая заставляет его остывать. Самый простой изолятор веществ — это вакуум, так как вакуумная технология исключает все три механизма теплопередачи. Поэтому во многих термосах применяют вакуум, т.е. пространство, где нет никаких веществ, следовательно, и передавать тепло от колбы в окружающую среду будет нечем.

    Принцип работы термоса схож с сосудом Дьюара, который представляет собой сосуд из двойных стенок. Между стенками находится вакуум или воздух. Сам сосуд сделан либо из стекла, либо из нержавеющей стали. Внутренняя часть колбы покрыта отражающим материалом, который отражает тепло внутри термоса. Внешняя часть термоса изготавливается либо из металла (больше механической прочности), либо из пластика. [3, 8]

    Термодинамика

    Термодинамика – раздел физики, изучающий общие свойства макроскопических систем и способы передачи, и превращения энергии в таких системах. В термодинамике изучаются процессы, для описания которых следует ввести понятие тепловых явлений и температуры.

    Читайте также:  Небольшая теплица для огурцов

    Тепловые явления – явления, связанные с нагреванием или охлаждением тел. Все тепловые явления связаны с температурой. Все тела характеризуются состоянием своего теплового равновесия, главной характеристикой которого является температура.

    Температура – мера «нагретости» тела. Приборы, которыми можно измерить температуру тела, называются термометрами. Чем выше температура, тем быстрее частицы движутся в теле, движение которых называется тепловым движением (хаотическое). [6]

    Теплопередача бывает трех видов: теплопроводность, конвекция и излучение.

    Теплопроводность – явление, при котором энергия передается от одной части тела к другой посредством столкновения частиц или при контакте двух тел. Теплопроводность связана с переносом энергии от более нагретых веществ к менее нагретым, который осуществляется хаотически движущимися частицами тела.

    Если начать нагревать металлический стержень, к которому прикреплены гвоздики, то через некоторое время можно наблюдать, что гвоздики начнут отпадать. Это происходит за счет находящихся на концах стержня молекул, которые получают энергию и передают ее соседним молекулам, и тем самым стержень нагревается.

    Конвекция – явление, связанное с переносом энергии струями, большими группами частиц жидкостей или газов. Как мы можем ее наблюдать? Например, при нагревании льда в пробирке с водой. Наберем в пробирку воду, положим лёд на дно пробирки и начнём нагревать зажжённой свечой верхний край пробирки.

    При этом верхний край пробирки нагреется, но лёд так и не растает. Почему так происходит? Преимущественно это связанно с недостаточной теплопроводность воды распространять тепло по всей пробирке. Если же мы поместим пламя свечи к нижней части пробирке, то через некоторое время мы можем увидеть, что весь лёд в пробирке растает. Приведенные опыты свидетельствуют о том, что перенос энергии происходит не путем теплопередачи, а конвекцией.

    Излучение – явление передачи энергии, наряду с конвекцией и теплопроводностью. Или, можно сказать, что излучение – это процесс испускания и распространения энергии в виде электромагнитных волн. Излучение можно наблюдать при взаимодействии Солнца и Земли.

    Принцип уменьшения теплопередачи каждым из способов положен в основу работы термоса. Термос устроен таким образом, что теплообмен с окружающей средой сведен до минимума. Вакуум между стенками колбы препятствует теплопередаче путем конвекции и теплопроводности, а зеркальный отражающий слой на внутренней поверхности колбы препятствует теплопередаче излучением. [4]

    Количество теплоты – энергия, которую тело получает или теряет в процессе теплопередачи. Количество теплоты является функцией процесса, а не функцией состояния, то есть количество теплоты, полученное системой, зависит от способа, которым она была приведена в текущее состояние. Внутренняя энергия тела может изменяться за счёт работы внешних сил. Если тело получает энергию, его внутренняя энергия увеличивается, а если теряет энергию – уменьшается. Это свидетельствует о связанности количества теплоты с внутренней энергией.

    Для характеристики изменения внутренней энергии при теплообмене вводится величина, называемая количеством теплоты и обозначаемая Q=[Дж]

    Количество теплоты зависит от изменения температуры, массы и рода жидкости.

    Количество теплоты, необходимое для нагревания тела или выделяющееся при его охлаждении, прямо пропорционально массе тела и изменению его температуры: Q = cm(t2-t1), где с – удельная теплоемкость (Дж/кг•К), m – масса тела (кг), t2 – конечная температура тела, t1 – начальная температура. [1]

    Охлаждение тела – процесс обратный нагреванию. Для его описания используется та же формула, что и для нагревания. Знак "минус", полученный при вычислениях говорит о том, что тело отдает теплоту, "плюс" – получает. [5]

    Скорость нагревания и охлаждения тела пропорциональна разности температур между телом и окружающей средой.

    Мощность – работа, выполненная в единицу времени. Это скалярная физическая величина, равная в общем случае скорости изменения, преобразования, передачи или потребления энергии системы. В более узком смысле мощность равна отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени. [10]

    Комментировать
    0 просмотров
    Комментариев нет, будьте первым кто его оставит

    Это интересно
    No Image Строительство
    0 комментариев
    No Image Строительство
    0 комментариев
    No Image Строительство
    0 комментариев
    No Image Строительство
    0 комментариев
    Adblock detector