No Image

Трансформатор с расщепленной обмоткой низшего напряжения

СОДЕРЖАНИЕ
0 просмотров
10 марта 2020

ЛЕКЦИЯ № 11

Тема: Трансформаторы с расщепленными обмотками, автотрансформаторы.

Цель: Изучить особенности конструкции и рабочих свойств трансформаторов с расщепленными обмотками и автотрансформаторов.

План: 1.Особенности конструкции.

2. Рабочие свойства.

3. Рабочие свойства и особенности конструкции автотрансформаторов.

Литература: 1. Бургардт К.А., Просужих Р.П.

«Корабельные электрические машины».

Часть 2. 1980., стр. 37-41.

1969., стр. 533-550.

Лекция обсуждена и одобрена на заседании кафедры

Протокол № _____ от «_____» _____________200 г.

Преподаватель: Просужих Р.П.

Лекция № 11 Трансформаторы с расщепленными обмотками. Автотрансформаторы

Трансформаторы с расщепленной обмоткой

Такими трансформаторами называют трехобмоточные трансформаторы, у которых две вторичные (или две первичные при одной вторичной) не имеют индуктивной связи друг с другом. Это достигается особенностью конструкции трансформатора с расщепленной обмоткой, которую мы рассмотрим на примере однофазного трансформатора с одной первичной обмоткой высшего напряжения (ВН) и двумя вторичными обмотками низшего напряжения (НН), которые представляют собой обмотку НН, расщепленную на две части «2» и «3». Магнитопровод такого трансформатора должен быть бронестержневым, как показано на рисунке 1.

Рисунок 1. Расположение обмоток трансформатора с расщепленными обмотками

При этом первичная обмотка «1» ВН также должна иметь две части ВН12 и ВН13, расположенные на разных стержнях, т.е. совместно с обмотками «2» и «3». Это значит, что первичная обмотка имеет две параллельные ветви, каждая из которых создает свой основной магнитный поток замыкающийся по своему стержню и своему ярму. Такое расположение обмоток на таком магнитопроводе обеспечивает слабую магнитную связь между обмотками «2» и «3», поэтому передача энергии из цепи обмотки «2» в цепь обмотки «3» посредством электромагнитного поля практически исключена. Это значит в свою очередь, что такой трансформатор можно рассматривать как два самостоятельных трансформатора, размещенных в одном корпусе и на одном магнитопроводе.

Если нагрузить одну из вторичных обмоток, например НН2, то на стороне ВН будет нагружена только одна из параллельных ветвей обмотки ВН, в частности ВН12, расположенная на одном стержне с обмоткой НН2.

Трансформатор с расщепленной обмоткой может передавать энергию и в обратном направлении, т.е. быть повышающим.

В этом случае обмотки НН2 и НН3 будут являться первичными. Они могут получать питание от двух отдельных генераторов. Вторичной обмоткой будет обмотка ВН, имеющая две параллельные ветви. Естественно, что в случае, когда один из генераторов будет отключен, то не будет нагружена и соответствующая ветвь вторичной обмотки ВН.

Номинальные напряжения U и U могут быть как одинаковымитак и различными. Соотношение магнитных потоков в стержнях трансформатора и зависит от соотношений между напряжением U1, и приведенными напряжениями Ů / 2 и Ů / 3. Если , то будут равны друг другу и приведенные токи . В этом случае одинаковы и магнитные потоки Ф2= Ф3. Следовательно, в боковых стержнях (ярмах) бронестержневого трансформатора магнитные потоки отсутствуют.

В общем случае это не так. Если напряжение и неодинаковы, например, при неодинаковой нагрузке обмоток НН2 и НН3, то и токи и магнитные потоки не равны друг другу. В этом случае в магнитопроводе появится магнитный поток , равный разности потоков в стержнях Ф2 и Ф3. Этот поток будет замыкаться по боковым стержням (ярмам). Если бы этих боковых стержней не было, то поток вынужден был бы замыкаться по воздуху (по путям рассеяния), а в основном по конструктивным элементам трансформатора (стенкам бака и т.п.).

Это привело бы к большим добавочным потерям на вихревые токи и перемагничивание. Именно по этой причине трансформаторы с расщепленными обмотками выполняют на бронестержневыхмагнитопроводах.

Основное преимущество трансформаторов с расщепленными обмотками состоит в том, что у них сопротивление короткого замыкания (ZK12 » ZK13) за счет независимости обмоток НН2 и НН3примерно в два раза больше, чем сопротивление короткого замыкания ZК обычного трансформатора, у которого параллельные ветви вторичной обмотки взаимозависимы. Это обуславливает меньшие значения тока короткого замыкания трансформаторов с расщепленными обмотками по сравнению с обычными двух и многообмоточными трансформаторами.

Суммарная мощность расщепленной обмотки, т.е. обмоток НН2 и НН3, равна мощности всего трансформатора, т.е. мощности обмотки ВН.

Трехфазные трансформаторы с расщепленными обмотками выполняются на обычных трехстержневых магнитопроводах. При этом каждая из частей расщепленной обмотки, принадлежащих одной фазе, расположена на одном и том же стержне магнитопровода. В этом случае роль крайних стержней (ярм) выполняют два других стержня, на которых расположены обмотки других фаз. Поскольку токи и магнитные потоки фаз сдвинуты по фазе на 120°эл, их взаимозависимость невелика.

Части расщепленной обмотки, т.е. НН2 и НН3 и параллельные ветви обмотки ВНкаждой из фаз, разнесены по высоте стержней, поэтому их потоки рассеяния не взаимосвязаны, что в свою очередь обеспечивает большие значения напряжений короткого замыкания и малые токи короткого замыкания.

В некоторых случаях с целью создания более рациональных условий коммутации электрических цепей одна из обмоток трансформатора разделяется на две или большее число гальванически несвязанных частей. Суммарная номинальная мощность этих обмоток равна номинальной мощности трансформатора, а их напряжения КЗ относительно другой обмотки практически равны, так что эти части допускают независимую нагрузку или питание. Такие обмотки, обычно обмотки НН, называются расщепленными.

Трансформаторы с расщепленной обмоткой являются разновидностью двухобмоточного трансформатора. В таком трансформаторе обмотка НН выполнена из двух или более обмоток, расположенных симметрично по отношению к обмотке ВН (рисунок 6.6). Номинальные напряжения ветвей одинаковы, а их мощности составляют часть номинальной мощности трансформатора и в сумме равны мощности обмотки ВН. В этом состоит отличие трансформаторов с расщепленными обмотками от трехобмоточных трансформаторов, у которых суммарная мощность обмоток СН и НН всегда больше мощности обмоток ВН.

Рисунок 6.6 – Устройство трехобмоточного трансформатора (а) и двухобмоточного трансформатора с расщепленной обмоткой НН (б)

На рисунке 6.7 представлена схема соединений обмоток для одной фазы трехфазного двухобмоточного трансформатора с расщепленной обмоткой НН на две ветви.

Читайте также:  Утепление пола каркасного дома керамзитом

Трансформаторы с расщепленной обмоткой в первом приближении можно рассматривать как два независимых трансформатора, питаемых от общей сети.

При КЗ в цепи одной из частей расщепленной обмотки в обмотках трансформатора возникают токи и напряжения существенно меньше, чем в том же трансформаторе с нерасщепленной обмоткой НН.

Применение трансформаторов с расщепленными обмотками НН, обладающими повышенными значениями индуктивных сопротивлений, способствует снижению мощности короткого замыкания на шинах НН почти вдвое, что позволяет во многих случаях обойтись без токоограничивающих реакторов.

Трансформаторы или трехфазные группы с расщепленными на две (или более) обмотками низшего напряжения устанавливают на электростанциях и крупных подстанциях районных электрических сетей и систем электроснабжения промышленных предприятий. Это позволяет присоединять к одному трансформатору два и более генераторов или независимых нагрузок одного или разных классов напряжений.

На электростанциях трансформаторы с расщепленными обмотками НН обеспечивают возможность присоединения нескольких генераторов к одному повышающему трансформатору. Такие укрупненные энергоблоки позволяют упростить схему РУ 330 – 500 кВ, Широкое распространение трансформаторы с расщепленной обмоткой НН получили в схемах питания собственных нужд крупных ТЭС с блоками 200 – 1200 МВт, а также на понижающих подстанциях с целью ограничения токов КЗ.

В настоящее время трехфазные двухобмоточные трансформаторы с расщепленными обмотками НН являются основным типом трансформаторов мощных приемных подстанций напряжением 110 – 220 кВ.

Автотрансформаторы

Наряду с трансформаторами для связи сетей с различающимися напряжениями широко применяют автотрансформаторы.

Автотрансформатором называется трансформатор, две или более обмотки которого гальванически связаны между собой.

В отличие от обычного трансформатора в автотрансформаторе для преобразования напряжения используется не только магнитная связь обмоток, но и их прямое или встречное последовательное электрическое соединение. У автотрансформатора вторичной обмоткой служит часть первичной обмотки, или наоборот (рисунок 6.8). На преобразование напряжения при помощи автотрансформатора затрачивается меньше активных материалов, чем на такое же преобразование, осуществляемое при помощи трансформатора. Это также снижает потери мощности, связанные с процессом преобразования. При малых коэффициентах трансформации автотрансформатор легче и дешевле многообмоточного трансформатора.

Наиболее экономично применять автотрансформаторы для связи сетей с глухозаземленными нейтралями напряжением 110 кВ и выше с соотношением номинальных напряжений до 3 – 4, например, 220 и 110 кВ, 500 и 220 кВ и др. Такие автотрансформаторы обычно выполняют на большие мощности (до 500 МВ . А и выше). Мощные автотрансформаторы изготавливают как в трехфазном, так и в однофазном (собираемом в трехфазные группы) исполнении. Обмотки трехфазных автотрансформаторов обычно соединяют в звезду (рисунок 6.9) с обязательным глухим заземлением нейтрали.

Также автотрансформаторы находят применение в электрических установках, когда требуется длительно или временно повышать или понижать напряжение в отдельных точках сети до 2 раз, например для снижения пусковых токов двигателей большой мощности или при регулировании режимов специальных электрометаллургических печей, а также в разнообразных установках радиосвязи, проводной и электронной техники.

Обмотка высшего напряжения состоит из двух обмоток – общей и последовательной. Обмотка среднего напряжения является частью обмотки ВН и называется общей обмоткой. Недостаток автотрансформатора – невозможность гальванического обособления цепей и как следствие возможность появления высокого напряжения на стороне СН.

Рисунок 6.9 – Схемы соединения обмоток трехобмоточного автотрансформатора

и соответствующие им векторные диаграммы напряжений

Помимо гальванически связанных обмоток автотрансформатор может иметь и третичные обмотки, работающие как в обыкновенном трансформаторе, не имеющие гальванической связи с другими обмотками. Дополнительные обмотки выполняются обычно низшего напряжения и соединяются треугольником (рисунок 6.9) , что способствует подавлению третьей гармоники фазных ЭДС, предотвращая их появление в линиях. Наличие таких обмоток также приводит к выравниванию фазных напряжений при несимметричной нагрузке. Номинальная мощность обмотки НН составляет от 20 до 50 % номинальной (проходной) мощности автотрансформатора.

Рассмотрим условия работы трехобмоточного трансформатора (рисунок 6.9). Автотрансформаторы могут работать в автотрансформаторных или комбинированных режимах. При работе в автотрансформаторном режиме мощность передается из сети ВН в сеть СН или наоборот. Третичная обмотка НН при этом не нагружена. При работе в комбинированном режиме к обмотке НН присоединяется нагрузка или компенсирующее устройство. При этом мощность в последовательной и общей обмотках состоит из мощности передаваемой в автотрансформаторном режиме, и мощности, передаваемой через обмотку НН.

В отличие от трансформатора, где вся мощность с первичной обмотки ВН передается на вторичную обмотку СН магнитным путем, в автотрансформаторе часть мощности передается непосредственно – без трансформации, через электрическую связь между последовательной и общей обмотками (электрическая мощность):

а также с помощью пронизывающего их магнитного поля, т.е. магнитным путем (трансформаторная мощность):

Сумма трансформаторной и электрической мощности равна проходной мощности автотрансформатора:

Под номинальной мощностью автотрансформатора понимается предельная мощность, которая может быть передана через автотрансформатор по обмоткам ВН и СН, имеющим между собой автотрансформаторную связь. Для отечественных трансформаторов мощности обмоток ВН и СН одинаковы и равны номинальной или проходной. Следовательно,

В общей обмотке протекает разность токов сетей ВН и СН. Поэтому эту обмотку рассчитывают на ток, меньший номинального тока автотрансформатора, определяемого на стороне ВН, и она может иметь площадь меньшего сечения, чем обмотка того же напряжения двухобмоточного трансформатора. Меньшую площадь имеет и магнитопровод автотрансформатора. В результате, чем ближе к единице коэффициент трансформации

тем меньше расход активных материалов (меди обмоток, стали магнитопровода и изоляционных материалов) и приблизительно – стоимость автотрансформатора. Поэтому понижающие автотрансформаторы оказываются дешевле трансформаторов равной номинальной мощности, а применение автотрансформаторов взамен трансформаторов становится тем выгоднее, чем ближе друг к другу напряжения UВН и UСН.

Мощность общей части обмоток автотрансформатора (рисунок 6.9)

где – так называемый коэффициент выгодности.

Для характеристики автотрансформаторов введено также понятие типовой мощности, на которую рассчитывается последовательная обмотка:

т.е. .

Типовая мощность отображает экономическую сторону конструкции автотрансформаторов, т.е. расход активных материалов. Различие технико-экономических показателей трансформаторов и автотрансформаторов зависит от соотношения между номинальной и типовой (расчетной) мощностями, т.е. от коэффициента выгодности αв. Поскольку

Читайте также:  Dsx a30e нет звука радио

то очевидно, что преимущества автотрансформатора проявляются в большей степени тогда, когда с его помощью связываются сети более близких номинальных напряжений.

Мощность обмотки НН, обычно равную 50 % номинальной мощности автотрансформатора, рассчитывают на передачу типовой мощности.

В отдельных автотрансформаторах мощность обмотки НН составляет 20, 25 и 40 % и не равна типовой мощности. В этом случае коэффициент выгодности не равен отношению , именуемый в дальнейшем коэффициент приведения (пересчета).

Обмотка НН соединяется в треугольник и предназначена для питания нагрузок, расположенных в районе рассматриваемой подстанции, а также для подключении компенсирующих реактивную мощность устройств (батарей конденсаторов, синхронных компенсаторов и др.). Номинальное напряжение третьей обмотки в зависимости от удаленности нагрузок может быть 6,6, 11 и 38,5 кВ.

Наличие электрической связи между обмотками ВН и СН обуславливает возможность применения автотрансформаторов только в сетях с глухозаземленной нейтралью, т.е. в сетях напряжением 110 кВ и выше, а сами автотрансформаторы изготавливают с высшим напряжением не менее 150 кВ и средним не менее 110 кВ. При отсутствии заземления нейтрали и замыкания на землю одной фазы в сети ВН потенциал относительно земли двух других фаз сети СН повысится до недопустимого значения. Если, например, выполнить автотрансформатор напряжением 115/38,5/11 кВ с изолированной нейтралью, то при замыкании на землю фазы А сети 110 кВ потенциал относительно земли фаз а и с сети 35 кВ до 3,5 Uср. Это недопустимо как для изоляции обмотки 38,5 кВ автотрансформатора, так и для аппаратуры сети 35 кВ.

Охлаждение трансформаторов

Отсутствие у трансформаторов вращающихся частей умень­шает нагрев трансформатора из-за отсутствия механических по­терь, но это же обстоятельство усложняет процесс охлаждения, так как исключает применение в трансформаторах самовентиля­ции. По этой причине основной способ охлаждения трансформа­торов – естественное охлаждение. Однако в трансформаторах значительной мощности с целью повышения удельных электро­магнитных нагрузок применяют более эффективные методы охлаждения. Наибольшее применение получили следующие способы охлаждения:

Сухой трансформатор с естественным воздушным охлаждением (С) открытого исполнения.Все нагреваемые час­ти трансформатора непосредственно соприкасаются с воздухом. Их охлаждение происходит за счет излучения теплоты и естест­венной конвекции воздуха. Иногда такие трансформаторы снаб­жают защитным кожухом, имеющим жалюзи или же отверстия, закрытые сеткой. Этот вид охлаждения применяют в трансформаторах низкого напряжения при их уста­новке в сухих закрытых помещениях.

Сухие трансформаторы применяются при мощностях до 1600 кВ . А, напряжении до 20 кВ и устанавливаются в помещениях с относительной влажностью воздуха до 80 %.

Разновидности сухих трансформаторов (видов охлаждения):

С – естественное воздушное при открытом исполнении;

СЗ – естественное воздушное при защищенном исполнении;

СГ – естественное воздушное при герметичном исполнении;

СД – воздушное с принудительной циркуляцией воздуха.

Естественное масля­ное охлаждение (М), т.е. естественная циркуляция масла.Магнитопровод с обмотками поме­щают в бак, заполненный трансформаторным маслом, которое омывает нагревае­мые части трансформатора, путем конвекции отводит теплоту и передает ее стен­кам бака, последние, в свою очередь, охлаждаются путем излучения теплоты и конвекции воздуха. Для увеличения охлаждаемой поверхности бака его де­лают ребристым или же применяют трубчатые баки (рисунок 6.1). В транс­форматорах большой еди­ничной мощности трубы объединяют в радиаторы (радиаторные баки). Нагре­тые частицы масла подни­маются в верхнюю часть бака и по трубам опуска­ются вниз. При этом, со­прикасаясь со стенками труб, масло охлаждается. Трансформаторное масло обладает вы­сокими электроизоляционными свойствами, поэтому, пропитывая изоляцию обмоток, оно улучшает ее свойства и повышает надеж­ность трансформаторов при высоких напряжениях. Это особенно важно для трансформаторов, устанавливаемых на открытых пло­щадках. Следует заметить, что масляное охлаждение усложняет и удорожает эксплуатацию трансформаторов, так как требует сис­тематического контроля за качеством масла и периодической его замены.

Трансформаторы с охлаждением типа М применяют при мощности до 6300 кВ . А.

Разновидности масляных трансформаторов типа М (видов охлаждения):

М – естественная циркуляция воздуха и масла;

МЦ – естественная циркуляция воздуха и принудительная циркуляция масла с ненаправленным потоком масла;

НМЦ – естественная циркуляция воздуха и принудительная циркуляция масла с направленным потоком масла.

Масляное охлаждение с дутьем (Д).Трансформаторы снабжают электрическими вентиляторами, которые обдувают радиаторы трансформатора. Конвекция масла внутри бака остается естест­венной. Этот вид охлаждения позволяет увеличить единичную мощность трансформатора на 40 – 50%.

Система охлаждения типа Д применяется в трансформаторах мощностью 10 000 – 80 000 кВ . А. При снижении нагрузки трансформатора с дутьевым охлаждением на 50 – 60% вентиляторы можно отключить, т.е. пе­рейти на естественное масляное охлаждение.

Принудительная циркуляция масла через водяной охладитель (Ц)(Масляно-водяное охлаждение)(рисунок 6.10).

Рисунок 6.10 – Масляно-водяное охлаждение трансфор­матора

Ц – с принудительной циркуляцией воды и ненаправленным потоком масла:

НЦ – с принудительной циркуляцией воды и направленным потоком масла.

Нагретое в транс­форматоре 1 масло посредством насоса 2 прогоняется через охладитель 3, в котором циркулирует вода. Это наиболее эффективный способ охлаждения, так как коэффициент теплопередачи от масла в воду значительно выше, чем в воздух. Одновременно масло про­ходит через воздухоохладитель 4 и фильтр 5, где освобождается от нежелательных включений.

Водяные охладители систем Ц и НЦ компактнее воздушных и рассеивают мощности до 1000 кВт.

Масляное охлаждение с дутьем и принудительной циркуляцией масла (ДЦ).Масляное охлаждение с дутьем и направленным потоком масла (НДЦ). С помощью насоса 1 (рисунок 6.11) создают принудительную циркуляцию трансформаторного масла через специальные охладители 2, собранные из трубок. Одновременно необходимое число вентиляторов 3 создает направленный поток воздуха, обдувающий поверхность трубок охладителя.

Системы охлаждения типов ДЦ и НДЦ применяют для трансформаторов общего назначения мощностью 80 000 – 400 000 кВ . А, каждый охладитель такой системы может рассеивать мощность до 200 кВт.

Читайте также:  Компрессор для теплового насоса

Трансформаторы с негорючим жидким диэлектриком (Н) – совтолом устанавливаются в тех производственных помещениях, где окружающая среда не допускает использования масляных трансформаторов. Например они рекомендуются для крупных машинных залов.

Разновидности видов охлаждения совтоловых трансформаторов:

Н – естественное негорючим жидким диэлектриком;

НД – негорючим жидким диэлектриком с принудительной циркуляцией воздуха;

ННД – негорючим жидким диэлектриком с принудительной циркуляцией воздуха и направленным потоком жидкого диэлектрика.

Соединяет ветви двух напряжений.

НАПРИМЕР: 110/10,5/10,5кВ или (110-ВН; 10,5-НН1; 10,5-НН2).

Соединяет сети ВН и двух ближайших (одного класса) напряжений.

НАПРИМЕР: 110/10,5/6,3кВ (110-ВН; 10,5-НН1; 6,3-НН2).

Типы: ТРДН, ТРДЦН.

Мощность каждой обмотки низшего напряжения составляет часть номинальной мощности (1/2 Sном). Допускается любое распределение нагрузки между ветвями расщепленной обмотки (одна ветвь может быть полностью нагружена, а вторая отключена или обе ветви нагружены полностью).

; ;

;

;

.

Схема замещения трансформатора с расщепленной обмоткой низшего напряжения.

Автотрансформаторы

Наряду с трансформаторами, для связи электрических сетей с различными напряжениями, широко применяются автотрансформаторы (АТ).

Условное обозначение АТ в схемах: (Рис. 1)

АТ осуществляют непосредственную электрическую связь между сетями высшего и среднего напряжения, обеспечивают перетоки мощности как односторонние, так и реверсивные, одновременно могут питать нагрузку на стороне НН или через присоединенные к обмотке НН, синхронные компенсаторы могут выдавать в сеть СН опережающего мощность и др. Наиболее характерным режимом АТ является выдача мощности из магистральных сетей ВН в сети СН для электроснабжения значительных районов.

Основное отличие АТ и Т заключается в следующем:

в трансформаторе первичная обмотка со вторичной обмоткой имеет только магнитную связь;

в АТ между обмотками ОА ОС осуществляется электрическая связь

Эл. связанные обмотки АО и СО. Часть обмотки между выводами АО называется последовательной, а между выводами СО называется общей.

Последовательная и общая обмотки имеют между собой как магнитную, так и электрическую связь. Обмотка низкого напряжения с двумя другими обмотками имеет только магнитная связь.

В АТ часть мощности передается непосредственно без трансформации, через контактную (электрическую) связь между последовательной и общей обмотками.

Токораспределение у АТ другое. Если мощность передается с ВНСН и с ВННН.

В понижающем АТ ток в общей обмотке (Iтр) определяется разностью токов, замыкающихся через сети ВН и СН. Эта обмотка рассчитывается на ток меньший Iном АТ, определяемого на стороне ВН.

АТ в каждой фазе имеет обмотку ОА-ВН, состоящую из общей обмотки ОС-СН и последовательной обмотки АС. Эти обмотки соединены между собой по автотрансформаторной схеме, т.е. электрически. Третья обмотка – третичная НН всегда соединена треугольником и имеет трансформаторную электромагнитную связь с обмоткой ОА (ВН), т.е. с общей (ОС) и последовательной (АС), что на схеме отражено.

При работе АТ в режиме понижения напряжения в последовательной обмотке проходит ток Iв, который создавая магнитный поток, наводит в общей обмотке ток I. Ток нагрузки вторичной обмотки Iс складывается из тока Iв, проходящего благодаря гальванической (электрической) связи обмоток, и тока I, созданного магнитной связью этих обмоток:

АТ также как и трансформатор характеризуются номинальными напряжениями и мощностью.

Под номинальной мощностью АТ понимается предельная проходная мощность, которая может быть передана через АТ на стороне ВН:

Мощность, которую АТ может принять из сети ВН или передать в эту сеть, называется проходной мощностью Sпрох, причем Sпрох= Sтр,+ Sэ,

Sтр – трансформаторная мощность;

Sэ – электрическая мощность.

Для характеристики АТ введено еще понятие типовой номинальной мощности Sт, на которую рассчитывается последовательная обмотка (АС).

Типовая, т.е. трансформаторная мощность АТ при номинальных условиях характеризует способность АТ передавать мощность магнитным путем. Она определяет габариты и стоимость АТ, а также расход материалов и мощность отдельных обмоток.

Для этой последовательной обмотки, протекающая по ней мощность определяется при отсутствии нагрузки НН.

– коэффициент трансформации;

или =, где =1-;

k – коэффициент трансформации.

Т.о. типовая мощность характеризует мощность передаваемую электромагнитным путем, через обмотки, связанные электрически.

При использовании третичной обмотки (НН) в понижающих АТ для питания нагрузки (или для присоединения к ней генератора в повышающих АТ) предельная ее мощность равна типовой.

В понижающем АТ при передаче мощности с ВНСН и ВННН в общей обмотке ОС (СН) протекает разность токов Iв – Iс. Вследствие этого общая обмотка рассчитана на ток меньший номинального, и мощность этой обмотки равна его типовой мощности. (Sобщ.обм.=Sтип.)

Т.о. конструкция понижающего АТ делает возможным передачу мощности больше той, на которую рассчитываются его обмотки. Понижающие АТ поэтому дешевле трех обмоточных трансформаторов той же мощности и характеризуются меньшим расходом активных материалов на их изготовление и следовательно меньшими потерями активной мощности.

Преимущества АТ проявляются в большей степени при малых значениях (коэффициент выгодности), т.е. тогда, когда они связывают сети более близких напряжений.

Sт=Sном; .

АТ, как и трех обмоточные трансформаторы характеризуются потерями и токами ХХ (Рхх, I=Iхх) и тремя значениями напряжений КЗ.

Таблицы параметров АТ содержат при значения потерь КЗ, отвечающие трем опытам КЗ. Причем одно из них Ркз(в-с)= Ркз(1-2) приводятся отнесенными к номинальной мощности АТ, а два других Р’кз(в-н)= Р’кз(1-3) и Р’кз(с-н)= Р’кз(2-3) в ряде случаев указываются отнесенными к типовой мощности.

Эта особенность отвечает условиям осуществления опытов КЗ. При КЗ обмотки НН, рассчитанной на типовую мощность, напряжение поднимается до величины, определяющей в этой обмотке ток, соответствующий типовой, а не номинальной мощности.

При КЗ на стороне СН и подаче напряжения на ВН, это напряжение может подниматься до величины, при которой ток в последовательной обмотке достигнет значения, отвечающего номинальной мощности АТ.

Для АТ справедлива схема замещения трехобмоточного трансформатора.

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
Adblock detector